Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(8): 112791, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37499655

ABSTRACT

Vasculogenic mimicry (VM) describes the formation of pseudo blood vessels constructed of tumor cells that have acquired endothelial-like properties. VM channels endow the tumor with a tumor-derived vascular system that directly connects to host blood vessels, and their presence is generally associated with poor patient prognosis. Here we show that the transcription factor, Foxc2, promotes VM in diverse solid tumor types by driving ectopic expression of endothelial genes in tumor cells, a process that is stimulated by hypoxia. VM-proficient tumors are resistant to anti-angiogenic therapy, and suppression of Foxc2 augments response. This work establishes co-option of an embryonic endothelial transcription factor by tumor cells as a key mechanism driving VM proclivity and motivates the search for VM-inhibitory agents that could form the basis of combination therapies with anti-angiogenics.


Subject(s)
Immunotherapy , Neovascularization, Pathologic , Humans , Neovascularization, Pathologic/metabolism , Cell Line, Tumor
2.
Biol Imaging ; 3: e11, 2023.
Article in English | MEDLINE | ID: mdl-38487685

ABSTRACT

With the aim of producing a 3D representation of tumors, imaging and molecular annotation of xenografts and tumors (IMAXT) uses a large variety of modalities in order to acquire tumor samples and produce a map of every cell in the tumor and its host environment. With the large volume and variety of data produced in the project, we developed automatic data workflows and analysis pipelines. We introduce a research methodology where scientists connect to a cloud environment to perform analysis close to where data are located, instead of bringing data to their local computers. Here, we present the data and analysis infrastructure, discuss the unique computational challenges and describe the analysis chains developed and deployed to generate molecularly annotated tumor models. Registration is achieved by use of a novel technique involving spherical fiducial marks that are visible in all imaging modalities used within IMAXT. The automatic pipelines are highly optimized and allow to obtain processed datasets several times quicker than current solutions narrowing the gap between data acquisition and scientific exploitation.

3.
Nat Commun ; 12(1): 5773, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599159

ABSTRACT

Protein localisation and translocation between intracellular compartments underlie almost all physiological processes. The hyperLOPIT proteomics platform combines mass spectrometry with state-of-the-art machine learning to map the subcellular location of thousands of proteins simultaneously. We combine global proteome analysis with hyperLOPIT in a fully Bayesian framework to elucidate spatiotemporal proteomic changes during a lipopolysaccharide (LPS)-induced inflammatory response. We report a highly dynamic proteome in terms of both protein abundance and subcellular localisation, with alterations in the interferon response, endo-lysosomal system, plasma membrane reorganisation and cell migration. Proteins not previously associated with an LPS response were found to relocalise upon stimulation, the functional consequences of which are still unclear. By quantifying proteome-wide uncertainty through Bayesian modelling, a necessary role for protein relocalisation and the importance of taking a holistic overview of the LPS-driven immune response has been revealed. The data are showcased as an interactive application freely available for the scientific community.


Subject(s)
Inflammation/metabolism , Leukemia/metabolism , Leukemia/pathology , Lipopolysaccharides/pharmacology , Proteomics , Algorithms , Anti-Infective Agents/metabolism , Anti-Inflammatory Agents/metabolism , Antigen Presentation , Autophagosomes/metabolism , Bayes Theorem , Cell Cycle Checkpoints , Cell Membrane/metabolism , Cell Nucleus/metabolism , Cell Shape , Humans , Immunity , Inflammation/pathology , Leukemia/immunology , Lymphocyte Activation/immunology , Lysosomes/metabolism , Neoplasm Proteins/metabolism , Protein Transport , Proteome/metabolism , Signal Transduction , T-Lymphocytes/immunology , THP-1 Cells , Time Factors , Transport Vesicles/metabolism , Up-Regulation , rho GTP-Binding Proteins/metabolism
4.
J Cell Biol ; 219(4)2020 04 06.
Article in English | MEDLINE | ID: mdl-32328641

ABSTRACT

Filopodia are finger-like actin-rich protrusions that extend from the cell surface and are important for cell-cell communication and pathogen internalization. The small size and transient nature of filopodia combined with shared usage of actin regulators within cells confounds attempts to identify filopodial proteins. Here, we used phage display phenotypic screening to isolate antibodies that alter the actin morphology of filopodia-like structures (FLS) in vitro. We found that all of the antibodies that cause shorter FLS interact with SNX9, an actin regulator that binds phosphoinositides during endocytosis and at invadopodia. In cells, we discover SNX9 at specialized filopodia in Xenopus development and that SNX9 is an endogenous component of filopodia that are hijacked by Chlamydia entry. We show the use of antibody technology to identify proteins used in filopodia-like structures, and a role for SNX9 in filopodia.


Subject(s)
Pseudopodia/metabolism , Sorting Nexins/metabolism , Xenopus Proteins/metabolism , Animals , Female , HeLa Cells , Humans , Male , Sorting Nexins/genetics , Xenopus Proteins/genetics , Xenopus laevis
5.
Nat Commun ; 10(1): 331, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30659192

ABSTRACT

The study of protein localisation has greatly benefited from high-throughput methods utilising cellular fractionation and proteomic profiling. Hyperplexed Localisation of Organelle Proteins by Isotope Tagging (hyperLOPIT) is a well-established method in this area. It achieves high-resolution separation of organelles and subcellular compartments but is relatively time- and resource-intensive. As a simpler alternative, we here develop Localisation of Organelle Proteins by Isotope Tagging after Differential ultraCentrifugation (LOPIT-DC) and compare this method to the density gradient-based hyperLOPIT approach. We confirm that high-resolution maps can be obtained using differential centrifugation down to the suborganellar and protein complex level. HyperLOPIT and LOPIT-DC yield highly similar results, facilitating the identification of isoform-specific localisations and high-confidence localisation assignment for proteins in suborganellar structures, protein complexes and signalling pathways. By combining both approaches, we present a comprehensive high-resolution dataset of human protein localisations and deliver a flexible set of protocols for subcellular proteomics.


Subject(s)
Proteome/analysis , Proteomics/methods , Cell Fractionation , Cell Line, Tumor , Centrifugation, Density Gradient/methods , Humans , Mass Spectrometry/methods , Spatial Analysis , Ultracentrifugation
6.
PLoS Comput Biol ; 14(11): e1006516, 2018 11.
Article in English | MEDLINE | ID: mdl-30481170

ABSTRACT

Analysis of the spatial sub-cellular distribution of proteins is of vital importance to fully understand context specific protein function. Some proteins can be found with a single location within a cell, but up to half of proteins may reside in multiple locations, can dynamically re-localise, or reside within an unknown functional compartment. These considerations lead to uncertainty in associating a protein to a single location. Currently, mass spectrometry (MS) based spatial proteomics relies on supervised machine learning algorithms to assign proteins to sub-cellular locations based on common gradient profiles. However, such methods fail to quantify uncertainty associated with sub-cellular class assignment. Here we reformulate the framework on which we perform statistical analysis. We propose a Bayesian generative classifier based on Gaussian mixture models to assign proteins probabilistically to sub-cellular niches, thus proteins have a probability distribution over sub-cellular locations, with Bayesian computation performed using the expectation-maximisation (EM) algorithm, as well as Markov-chain Monte-Carlo (MCMC). Our methodology allows proteome-wide uncertainty quantification, thus adding a further layer to the analysis of spatial proteomics. Our framework is flexible, allowing many different systems to be analysed and reveals new modelling opportunities for spatial proteomics. We find our methods perform competitively with current state-of-the art machine learning methods, whilst simultaneously providing more information. We highlight several examples where classification based on the support vector machine is unable to make any conclusions, while uncertainty quantification using our approach provides biologically intriguing results. To our knowledge this is the first Bayesian model of MS-based spatial proteomics data.


Subject(s)
Bayes Theorem , Models, Theoretical , Proteomics , Algorithms , Animals , Embryonic Stem Cells/metabolism , Machine Learning , Mice , Reproducibility of Results , Subcellular Fractions/metabolism , Uncertainty
7.
Science ; 356(6340)2017 05 26.
Article in English | MEDLINE | ID: mdl-28495876

ABSTRACT

Resolving the spatial distribution of the human proteome at a subcellular level can greatly increase our understanding of human biology and disease. Here we present a comprehensive image-based map of subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of the proteomes of 13 major organelles. Exploration of the proteomes revealed single-cell variations in abundance or spatial distribution and localization of about half of the proteins to multiple compartments. This subcellular map can be used to refine existing protein-protein interaction networks and provides an important resource to deconvolute the highly complex architecture of the human cell.


Subject(s)
Molecular Imaging , Organelles/chemistry , Organelles/metabolism , Protein Interaction Maps , Proteome/analysis , Proteome/metabolism , Single-Cell Analysis , Cell Line , Datasets as Topic , Female , Humans , Male , Mass Spectrometry , Microscopy, Fluorescence , Protein Interaction Mapping , Proteome/genetics , Reproducibility of Results , Subcellular Fractions , Transcriptome
8.
Nat Protoc ; 12(6): 1110-1135, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28471460

ABSTRACT

The organization of eukaryotic cells into distinct subcompartments is vital for all functional processes, and aberrant protein localization is a hallmark of many diseases. Microscopy methods, although powerful, are usually low-throughput and dependent on the availability of fluorescent fusion proteins or highly specific and sensitive antibodies. One method that provides a global picture of the cell is localization of organelle proteins by isotope tagging (LOPIT), which combines biochemical cell fractionation using density gradient ultracentrifugation with multiplexed quantitative proteomics mass spectrometry, allowing simultaneous determination of the steady-state distribution of hundreds of proteins within organelles. Proteins are assigned to organelles based on the similarity of their gradient distribution to those of well-annotated organelle marker proteins. We have substantially re-developed our original LOPIT protocol (published by Nature Protocols in 2006) to enable the subcellular localization of thousands of proteins per experiment (hyperLOPIT), including spatial resolution at the suborganelle and large protein complex level. This Protocol Extension article integrates all elements of the hyperLOPIT pipeline, including an additional enrichment strategy for chromatin, extended multiplexing capacity of isobaric mass tags, state-of-the-art mass spectrometry methods and multivariate machine-learning approaches for analysis of spatial proteomics data. We have also created an open-source infrastructure to support analysis of quantitative mass-spectrometry-based spatial proteomics data (http://bioconductor.org/packages/pRoloc) and an accompanying interactive visualization framework (http://www. bioconductor.org/packages/pRolocGUI). The procedure we outline here is applicable to any cell culture system and requires ∼1 week to complete sample preparation steps, ∼2 d for mass spectrometry data acquisition and 1-2 d for data analysis and downstream informatics.


Subject(s)
Proteome/analysis , Proteomics/methods , Spatial Analysis , Cell Fractionation/methods , Centrifugation, Density Gradient/methods , Eukaryotic Cells/chemistry , Mass Spectrometry/methods
9.
PLoS Comput Biol ; 12(5): e1004920, 2016 05.
Article in English | MEDLINE | ID: mdl-27175778

ABSTRACT

Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism that can be assayed using high-throughput mass spectrometry (MS). These MS-based spatial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands of proteins in a specific system under controlled conditions. Recent advances in high-throughput MS methods have yielded a plethora of experimental spatial proteomics data for the cell biology community. Yet, there are many third-party data sources, such as immunofluorescence microscopy or protein annotations and sequences, which represent a rich and vast source of complementary information. We present a unique transfer learning classification framework that utilises a nearest-neighbour or support vector machine system, to integrate heterogeneous data sources to considerably improve on the quantity and quality of sub-cellular protein assignment. We demonstrate the utility of our algorithms through evaluation of five experimental datasets, from four different species in conjunction with four different auxiliary data sources to classify proteins to tens of sub-cellular compartments with high generalisation accuracy. We further apply the method to an experiment on pluripotent mouse embryonic stem cells to classify a set of previously unknown proteins, and validate our findings against a recent high resolution map of the mouse stem cell proteome. The methodology is distributed as part of the open-source Bioconductor pRoloc suite for spatial proteomics data analysis.


Subject(s)
Proteome/metabolism , Proteomics/statistics & numerical data , Algorithms , Animals , Arabidopsis , Computational Biology , Data Interpretation, Statistical , Drosophila , Embryonic Stem Cells/metabolism , Humans , Information Storage and Retrieval , Mass Spectrometry , Mice , Proteome/classification , Software , Subcellular Fractions/metabolism , Support Vector Machine
10.
Nat Commun ; 7: 8992, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26754106

ABSTRACT

Knowledge of the subcellular distribution of proteins is vital for understanding cellular mechanisms. Capturing the subcellular proteome in a single experiment has proven challenging, with studies focusing on specific compartments or assigning proteins to subcellular niches with low resolution and/or accuracy. Here we introduce hyperLOPIT, a method that couples extensive fractionation, quantitative high-resolution accurate mass spectrometry with multivariate data analysis. We apply hyperLOPIT to a pluripotent stem cell population whose subcellular proteome has not been extensively studied. We provide localization data on over 5,000 proteins with unprecedented spatial resolution to reveal the organization of organelles, sub-organellar compartments, protein complexes, functional networks and steady-state dynamics of proteins and unexpected subcellular locations. The method paves the way for characterizing the impact of post-transcriptional and post-translational modification on protein location and studies involving proteome-level locational changes on cellular perturbation. An interactive open-source resource is presented that enables exploration of these data.


Subject(s)
Intracellular Space/metabolism , Mouse Embryonic Stem Cells/metabolism , Proteome/metabolism , Animals , Cell Fractionation , Immunohistochemistry , Machine Learning , Mass Spectrometry , Mice , Multivariate Analysis , Pluripotent Stem Cells/metabolism , Proteomics/methods , Subcellular Fractions
11.
F1000Res ; 5: 2926, 2016.
Article in English | MEDLINE | ID: mdl-30079225

ABSTRACT

Spatial proteomics is the systematic study of protein sub-cellular localisation. In this workflow, we describe the analysis of a typical quantitative mass spectrometry-based spatial proteomics experiment using the MSnbase and pRoloc Bioconductor package suite. To walk the user through the computational pipeline, we use a recently published experiment predicting protein sub-cellular localisation in pluripotent embryonic mouse stem cells. We describe the software infrastructure at hand, importing and processing data, quality control, sub-cellular marker definition, visualisation and interactive exploration. We then demonstrate the application and interpretation of statistical learning methods, including novelty detection using semi-supervised learning, classification, clustering and transfer learning and conclude the pipeline with data export. The workflow is aimed at beginners who are familiar with proteomics in general and spatial proteomics in particular.

12.
Stem Cells ; 33(9): 2712-25, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26059426

ABSTRACT

During mammalian preimplantation development, the cells of the blastocyst's inner cell mass differentiate into the epiblast and primitive endoderm lineages, which give rise to the fetus and extra-embryonic tissues, respectively. Extra-embryonic endoderm (XEN) differentiation can be modeled in vitro by induced expression of GATA transcription factors in mouse embryonic stem cells. Here, we use this GATA-inducible system to quantitatively monitor the dynamics of global proteomic changes during the early stages of this differentiation event and also investigate the fully differentiated phenotype, as represented by embryo-derived XEN cells. Using mass spectrometry-based quantitative proteomic profiling with multivariate data analysis tools, we reproducibly quantified 2,336 proteins across three biological replicates and have identified clusters of proteins characterized by distinct, dynamic temporal abundance profiles. We first used this approach to highlight novel marker candidates of the pluripotent state and XEN differentiation. Through functional annotation enrichment analysis, we have shown that the downregulation of chromatin-modifying enzymes, the reorganization of membrane trafficking machinery, and the breakdown of cell-cell adhesion are successive steps of the extra-embryonic differentiation process. Thus, applying a range of sophisticated clustering approaches to a time-resolved proteomic dataset has allowed the elucidation of complex biological processes which characterize stem cell differentiation and could establish a general paradigm for the investigation of these processes.


Subject(s)
Cell Differentiation/physiology , Endoderm/physiology , Extraembryonic Membranes/physiology , Mouse Embryonic Stem Cells/physiology , Proteomics/methods , Animals , Cells, Cultured , Endoderm/cytology , Extraembryonic Membranes/cytology , Mice
13.
Dis Model Mech ; 8(8): 817-29, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26044960

ABSTRACT

Crohn's disease (CD) is associated with delayed neutrophil recruitment and bacterial clearance at sites of acute inflammation as a result of impaired secretion of proinflammatory cytokines by macrophages. To investigate the impaired cytokine secretion and confirm our previous findings, we performed transcriptomic analysis in macrophages and identified a subgroup of individuals with CD who had low expression of the autophagy receptor optineurin (OPTN). We then clarified the role of OPTN deficiency in: macrophage cytokine secretion; mouse models of bacteria-driven colitis and peritonitis; and zebrafish Salmonella infection. OPTN-deficient bone-marrow-derived macrophages (BMDMs) stimulated with heat-killed Escherichia coli secreted less proinflammatory TNFα and IL6 cytokines despite similar gene transcription, which normalised with lysosomal and autophagy inhibitors, suggesting that TNFα is mis-trafficked to lysosomes via bafilomycin-A-dependent pathways in the absence of OPTN. OPTN-deficient mice were more susceptible to Citrobacter colitis and E. coli peritonitis, and showed reduced levels of proinflammatory TNFα in serum, diminished neutrophil recruitment to sites of acute inflammation and greater mortality, compared with wild-type mice. Optn-knockdown zebrafish infected with Salmonella also had higher mortality. OPTN plays a role in acute inflammation and neutrophil recruitment, potentially via defective macrophage proinflammatory cytokine secretion, which suggests that diminished OPTN expression in humans might increase the risk of developing CD.


Subject(s)
Bacteria/metabolism , Cytokines/metabolism , Eye Proteins/metabolism , Neutrophil Infiltration , Adult , Animals , Case-Control Studies , Cell Cycle Proteins , Citrobacter/physiology , Colitis/blood , Colitis/microbiology , Colitis/pathology , Crohn Disease/genetics , Crohn Disease/microbiology , Cytokines/blood , Escherichia coli/physiology , Escherichia coli Infections/prevention & control , Female , Golgi Apparatus/metabolism , Humans , Inflammation Mediators/metabolism , Inheritance Patterns/genetics , Macrophages/metabolism , Male , Membrane Transport Proteins , Mice , Middle Aged , Models, Biological , Polymorphism, Single Nucleotide/genetics , Transcription Factor TFIIIA/deficiency , Transcription Factor TFIIIA/metabolism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation , Zebrafish
14.
Mol Cell Proteomics ; 13(8): 1937-52, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24846987

ABSTRACT

Quantitative mass-spectrometry-based spatial proteomics involves elaborate, expensive, and time-consuming experimental procedures, and considerable effort is invested in the generation of such data. Multiple research groups have described a variety of approaches for establishing high-quality proteome-wide datasets. However, data analysis is as critical as data production for reliable and insightful biological interpretation, and no consistent and robust solutions have been offered to the community so far. Here, we introduce the requirements for rigorous spatial proteomics data analysis, as well as the statistical machine learning methodologies needed to address them, including supervised and semi-supervised machine learning, clustering, and novelty detection. We present freely available software solutions that implement innovative state-of-the-art analysis pipelines and illustrate the use of these tools through several case studies involving multiple organisms, experimental designs, mass spectrometry platforms, and quantitation techniques. We also propose sound analysis strategies for identifying dynamic changes in subcellular localization by comparing and contrasting data describing different biological conditions. We conclude by discussing future needs and developments in spatial proteomics data analysis.


Subject(s)
Data Interpretation, Statistical , Proteomics/methods , Artificial Intelligence , Mass Spectrometry , Software , Sound
15.
Nucleic Acids Res ; 41(7): 4065-79, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23449222

ABSTRACT

The eukaryotic DNA replication initiation factor Mcm10 is essential for both replisome assembly and function. Human Mcm10 has two DNA-binding domains, the conserved internal domain (ID) and the C-terminal domain (CTD), which is specific to metazoans. SIRT1 is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that belongs to the sirtuin family. It is conserved from yeast to human and participates in cellular controls of metabolism, longevity, gene expression and genomic stability. Here we report that human Mcm10 is an acetylated protein regulated by SIRT1, which binds and deacetylates Mcm10 both in vivo and in vitro, and modulates Mcm10 stability and ability to bind DNA. Mcm10 and SIRT1 appear to act synergistically for DNA replication fork initiation. Furthermore, we show that the two DNA-binding domains of Mcm10 are modulated in distinct fashion by acetylation/deacetylation, suggesting an integrated regulation mechanism. Overall, our study highlights the importance of protein acetylation for DNA replication initiation and progression, and suggests that SIRT1 may mediate a crosstalk between cellular circuits controlling metabolism and DNA synthesis.


Subject(s)
Cell Cycle Proteins/metabolism , Sirtuin 1/metabolism , Acetylation , Cell Cycle , Cell Cycle Proteins/chemistry , Cell Line , Chromatin/metabolism , DNA Replication , Humans , Minichromosome Maintenance Proteins , Protein Binding , Protein Interaction Domains and Motifs , Protein Stability , Replication Origin , Sirtuin 1/antagonists & inhibitors
16.
J Proteome Res ; 12(3): 1436-53, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23320540

ABSTRACT

Depletion of DNA replication initiation factors such as CDC7 kinase triggers the origin activation checkpoint in healthy cells and leads to a protective cell cycle arrest at the G1 phase of the mitotic cell division cycle. This protective mechanism is thought to be defective in cancer cells. To investigate how this checkpoint is activated and maintained in healthy cells, we conducted a quantitative SILAC analysis of the nuclear- and cytoplasmic-enriched compartments of CDC7-depleted fibroblasts and compared them to a total cell lysate preparation. Substantial changes in total abundance and/or subcellular location were detected for 124 proteins, including many essential proteins associated with DNA replication/cell cycle. Similar changes in protein abundance and subcellular distribution were observed for various metabolic processes, including oxidative stress, iron metabolism, protein translation and the tricarboxylic acid cycle. This is accompanied by reduced abundance of two karyopherin proteins, suggestive of reduced nuclear import. We propose that altered nucleo-cytoplasmic trafficking plays a key role in the regulation of cell cycle arrest. The results increase understanding of the mechanisms underlying maintenance of the DNA replication origin activation checkpoint and are consistent with our proposal that cell cycle arrest is an actively maintained process that appears to be distributed over various subcellular locations.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , Proteomics , Replication Origin , Subcellular Fractions/metabolism , Cell Line , Chromatography, Liquid , DNA Primers , Humans , RNA Interference , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...