Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Clin Immunol ; 256: 109808, 2023 11.
Article in English | MEDLINE | ID: mdl-37852344

ABSTRACT

We sought to better understand the immune response during the immediate post-diagnosis phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by identifying molecular associations with longitudinal disease outcomes. Multi-omic analyses identified differences in immune cell composition, cytokine levels, and cell subset-specific transcriptomic and epigenomic signatures between individuals on a more serious disease trajectory (Progressors) as compared to those on a milder course (Non-progressors). Higher levels of multiple cytokines were observed in Progressors, with IL-6 showing the largest difference. Blood monocyte cell subsets were also skewed, showing a comparative decrease in non-classical CD14-CD16+ and intermediate CD14+CD16+ monocytes. In lymphocytes, the CD8+ T effector memory cells displayed a gene expression signature consistent with stronger T cell activation in Progressors. These early stage observations could serve as the basis for the development of prognostic biomarkers of disease risk and interventional strategies to improve the management of severe COVID-19. BACKGROUND: Much of the literature on immune response post-SARS-CoV-2 infection has been in the acute and post-acute phases of infection. TRANSLATIONAL SIGNIFICANCE: We found differences at early time points of infection in approximately 160 participants. We compared multi-omic signatures in immune cells between individuals progressing to needing more significant medical intervention and non-progressors. We observed widespread evidence of a state of increased inflammation associated with progression, supported by a range of epigenomic, transcriptomic, and proteomic signatures. The signatures we identified support other findings at later time points and serve as the basis for prognostic biomarker development or to inform interventional strategies.


Subject(s)
COVID-19 , Humans , Multiomics , Proteomics , SARS-CoV-2 , Cytokines
2.
Nat Commun ; 13(1): 4941, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35999210

ABSTRACT

Physiologic laminar shear stress (LSS) induces an endothelial gene expression profile that is vasculo-protective. In this report, we delineate how LSS mediates changes in the epigenetic landscape to promote this beneficial response. We show that under LSS, KLF4 interacts with the SWI/SNF nucleosome remodeling complex to increase accessibility at enhancer sites that promote the expression of homeostatic endothelial genes. By combining molecular and computational approaches we discover enhancers that loop to promoters of KLF4- and LSS-responsive genes that stabilize endothelial cells and suppress inflammation, such as BMPR2, SMAD5, and DUSP5. By linking enhancers to genes that they regulate under physiologic LSS, our work establishes a foundation for interpreting how non-coding DNA variants in these regions might disrupt protective gene expression to influence vascular disease.


Subject(s)
Chromatin , Endothelial Cells , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , Nucleosomes/genetics , Regulatory Sequences, Nucleic Acid
3.
J Leukoc Biol ; 112(2): 257-271, 2022 08.
Article in English | MEDLINE | ID: mdl-34826345

ABSTRACT

Macrophages use an array of innate immune sensors to detect intracellular pathogens and to tailor effective antimicrobial responses. In addition, extrinsic activation with the cytokine IFN-γ is often required as well to tip the scales of the host-pathogen balance toward pathogen restriction. However, little is known about how host-pathogen sensing impacts the antimicrobial IFN-γ-activated state. It was observed that in the absence of IRF3, a key downstream component of pathogen sensing pathways, IFN-γ-primed macrophages more efficiently restricted the intracellular bacterium Legionella pneumophila and the intracellular protozoan parasite Trypanosoma cruzi. This effect did not require IFNAR, the receptor for Type I IFNs known to be induced by IRF3, nor the sensing adaptors MyD88/TRIF, MAVS, or STING. This effect also did not involve differential activation of STAT1, the major signaling protein downstream of both Type 1 and Type 2 IFN receptors. IRF3-deficient macrophages displayed a significantly altered IFN-γ-induced gene expression program, with up-regulation of microbial restriction factors such as Nos2. Finally, we found that IFN-γ-primed but not unprimed macrophages largely excluded the activated form of IRF3 from the nucleus following bacterial infection. These data are consistent with a relationship of mutual inhibition between IRF3 and IFN-γ-activated programs, possibly as a component of a partially reversible mechanism for modulating the activity of potent innate immune effectors (such as Nos2) in the context of intracellular infection.


Subject(s)
Interferon Regulatory Factor-3 , Interferon-gamma , Legionella pneumophila , Macrophages , Trypanosoma cruzi , Adaptor Proteins, Signal Transducing/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon-gamma/metabolism , Legionella pneumophila/pathogenicity , Macrophages/metabolism , Nitric Oxide Synthase Type II/metabolism , Trypanosoma cruzi/pathogenicity
4.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34285077

ABSTRACT

Dysfunction in T cells limits the efficacy of cancer immunotherapy. We profiled the epigenome, transcriptome, and enhancer connectome of exhaustion-prone GD2-targeting HA-28z chimeric antigen receptor (CAR) T cells and control CD19-targeting CAR T cells, which present less exhaustion-inducing tonic signaling, at multiple points during their ex vivo expansion. We found widespread, dynamic changes in chromatin accessibility and three-dimensional (3D) chromosome conformation preceding changes in gene expression, notably at loci proximal to exhaustion-associated genes such as PDCD1, CTLA4, and HAVCR2, and increased DNA motif access for AP-1 family transcription factors, which are known to promote exhaustion. Although T cell exhaustion has been studied in detail in mice, we find that the regulatory networks of T cell exhaustion differ between species and involve distinct loci of accessible chromatin and cis-regulated target genes in human CAR T cell exhaustion. Deletion of exhaustion-specific candidate enhancers of PDCD1 suppress the expression of PD-1 in an in vitro model of T cell dysfunction and in HA-28z CAR T cells, suggesting enhancer editing as a path forward in improving cancer immunotherapy.


Subject(s)
Chromatin/metabolism , Neoplasms/therapy , Programmed Cell Death 1 Receptor/metabolism , Receptors, Chimeric Antigen , T-Lymphocytes/physiology , Animals , Antigens, CD19 , Cell Line , Chromatin/genetics , Gene Expression Regulation, Neoplastic , Humans , Mice , Programmed Cell Death 1 Receptor/genetics
5.
Cell ; 184(9): 2394-2411.e16, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33743211

ABSTRACT

SARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions. Targeted CRISPR screens revealed that the majority of functional RNA-binding proteins protect the host from virus-induced cell death, and comparative CRISPR screens across seven RNA viruses revealed shared and SARS-specific antiviral factors. Finally, by combining the RNA-centric approach and functional CRISPR screens, we demonstrated a physical and functional connection between SARS-CoV-2 and mitochondria, highlighting this organelle as a general platform for antiviral activity. Altogether, these data provide a comprehensive catalog of functional SARS-CoV-2 RNA-host protein interactions, which may inform studies to understand the host-virus interface and nominate host pathways that could be targeted for therapeutic benefit.


Subject(s)
Host-Pathogen Interactions , RNA, Viral/genetics , SARS-CoV-2/genetics , Animals , COVID-19/virology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Chlorocebus aethiops , Female , Genome, Viral , Humans , Lung/virology , Male , Mass Spectrometry , Mitochondria/metabolism , Mitochondria/ultrastructure , Proteome/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/ultrastructure , Vero Cells
6.
Nat Genet ; 52(11): 1158-1168, 2020 11.
Article in English | MEDLINE | ID: mdl-33106633

ABSTRACT

Genome-wide association studies of neurological diseases have identified thousands of variants associated with disease phenotypes. However, most of these variants do not alter coding sequences, making it difficult to assign their function. Here, we present a multi-omic epigenetic atlas of the adult human brain through profiling of single-cell chromatin accessibility landscapes and three-dimensional chromatin interactions of diverse adult brain regions across a cohort of cognitively healthy individuals. We developed a machine-learning classifier to integrate this multi-omic framework and predict dozens of functional SNPs for Alzheimer's and Parkinson's diseases, nominating target genes and cell types for previously orphaned loci from genome-wide association studies. Moreover, we dissected the complex inverted haplotype of the MAPT (encoding tau) Parkinson's disease risk locus, identifying putative ectopic regulatory interactions in neurons that may mediate this disease association. This work expands understanding of inherited variation and provides a roadmap for the epigenomic dissection of causal regulatory variation in disease.


Subject(s)
Alzheimer Disease/genetics , Brain/anatomy & histology , Neurons/physiology , Parkinson Disease/genetics , Adult , Atlases as Topic , Biological Variation, Population , Chromatin Assembly and Disassembly , Cohort Studies , Enhancer Elements, Genetic , Epigenomics , Genetic Heterogeneity , Genetic Predisposition to Disease , Genome-Wide Association Study , Haplotypes , Humans , Machine Learning , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , tau Proteins/genetics
7.
bioRxiv ; 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33052334

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a pandemic with growing global mortality. There is an urgent need to understand the molecular pathways required for host infection and anti-viral immunity. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with viral ChIRP-MS data from three other positive-sense RNA viruses defined pan-viral and SARS-CoV-2-specific host interactions. Functional interrogation of these factors with a genome-wide CRISPR screen revealed that the vast majority of viral RNA-binding proteins protect the host from virus-induced cell death, and we identified known and novel anti-viral proteins that regulate SARS-CoV-2 pathogenicity. Finally, our RNA-centric approach demonstrated a physical connection between SARS-CoV-2 RNA and host mitochondria, which we validated with functional and electron microscopy data, providing new insights into a more general virus-specific protein logic for mitochondrial interactions. Altogether, these data provide a comprehensive catalogue of SARS-CoV-2 RNA-host protein interactions, which may inform future studies to understand the mechanisms of viral pathogenesis, as well as nominate host pathways that could be targeted for therapeutic benefit. HIGHLIGHTS: · ChIRP-MS of SARS-CoV-2 RNA identifies a comprehensive viral RNA-host protein interaction network during infection across two species· Comparison to RNA-protein interaction networks with Zika virus, dengue virus, and rhinovirus identify SARS-CoV-2-specific and pan-viral RNA protein complexes and highlights distinct intracellular trafficking pathways· Intersection of ChIRP-MS and genome-wide CRISPR screens identify novel SARS-CoV-2-binding proteins with pro- and anti-viral function· Viral RNA-RNA and RNA-protein interactions reveal specific SARS-CoV-2-mediated mitochondrial dysfunction during infection.

8.
Dev Cell ; 54(6): 694-709.e9, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32763147

ABSTRACT

Transposable elements (TEs) comprise nearly half of the human genome and are often transcribed or exhibit cis-regulatory properties with unknown function in specific processes such as heart development. In the case of endogenous retroviruses (ERVs), a TE subclass, experimental interrogation is constrained as many are primate-specific or human-specific. Here, we use primate pluripotent stem-cell-derived cardiomyocytes that mimic fetal cardiomyocytes in vitro to discover hundreds of ERV transcripts from the primate-specific MER41 family, some of which are regulated by the cardiogenic transcription factor TBX5. The most significant of these are located within BANCR, a long non-coding RNA (lncRNA) exclusively expressed in primate fetal cardiomyocytes. Functional studies reveal that BANCR promotes cardiomyocyte migration in vitro and ventricular enlargement in vivo. We conclude that recently evolved TE loci such as BANCR may represent potent de novo developmental regulatory elements that can be interrogated with species-matching pluripotent stem cell models.


Subject(s)
Endogenous Retroviruses/genetics , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , Transcription Factors/genetics , Animals , DNA Transposable Elements/genetics , Evolution, Molecular , Gene Expression Regulation/genetics , Genome, Human , Humans , Primates/genetics , Species Specificity
9.
Nature ; 583(7816): 447-452, 2020 07.
Article in English | MEDLINE | ID: mdl-32499651

ABSTRACT

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers1. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.52-7 contains a distal enhancer that is functional in CD4+ regulatory T (Treg) cells and required for Treg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3+ Treg cells, which are unable to control colitis in a cell-transfer model of the disease. In human Treg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Subject(s)
Chromosomes, Human, Pair 11/genetics , Colitis/genetics , Colitis/immunology , Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease/genetics , T-Lymphocytes, Regulatory/immunology , Acetylation , Alleles , Animals , Chromosomes, Mammalian/genetics , Female , Forkhead Transcription Factors/metabolism , Histones/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Synteny/genetics
10.
Nat Commun ; 10(1): 4955, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672989

ABSTRACT

Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.


Subject(s)
Fibrosis/genetics , Scleroderma, Systemic/genetics , Vascular Diseases/genetics , Bayes Theorem , Chromatin Immunoprecipitation , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Nucleic Acid Conformation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
11.
Nat Biotechnol ; 37(8): 925-936, 2019 08.
Article in English | MEDLINE | ID: mdl-31375813

ABSTRACT

Understanding complex tissues requires single-cell deconstruction of gene regulation with precision and scale. Here, we assess the performance of a massively parallel droplet-based method for mapping transposase-accessible chromatin in single cells using sequencing (scATAC-seq). We apply scATAC-seq to obtain chromatin profiles of more than 200,000 single cells in human blood and basal cell carcinoma. In blood, application of scATAC-seq enables marker-free identification of cell type-specific cis- and trans-regulatory elements, mapping of disease-associated enhancer activity and reconstruction of trajectories of cellular differentiation. In basal cell carcinoma, application of scATAC-seq reveals regulatory networks in malignant, stromal and immune cells in the tumor microenvironment. Analysis of scATAC-seq profiles from serial tumor biopsies before and after programmed cell death protein 1 blockade identifies chromatin regulators of therapy-responsive T cell subsets and reveals a shared regulatory program that governs intratumoral CD8+ T cell exhaustion and CD4+ T follicular helper cell development. We anticipate that scATAC-seq will enable the unbiased discovery of gene regulatory factors across diverse biological systems.


Subject(s)
Bone Marrow Cells/metabolism , Chromatin/chemistry , Single-Cell Analysis/methods , T-Lymphocytes/metabolism , Cell Line , Computer Simulation , Gene Expression Regulation , Hematopoiesis , High-Throughput Nucleotide Sequencing , Humans , Leukocytes, Mononuclear , Transcription Factors/metabolism
12.
Nat Methods ; 16(6): 489-492, 2019 06.
Article in English | MEDLINE | ID: mdl-31133759

ABSTRACT

Modular domains of long non-coding RNAs can serve as scaffolds to bring distant regions of the linear genome into spatial proximity. Here, we present HiChIRP, a method leveraging bio-orthogonal chemistry and optimized chromosome conformation capture conditions, which enables interrogation of chromatin architecture focused around a specific RNA of interest down to approximately ten copies per cell. HiChIRP of three nuclear RNAs reveals insights into promoter interactions (7SK), telomere biology (telomerase RNA component) and inflammatory gene regulation (lincRNA-EPS).


Subject(s)
Chromatin/chemistry , Chromatin/genetics , Embryonic Stem Cells/metabolism , Gene Expression Regulation , RNA, Long Noncoding/genetics , RNA/chemistry , Telomerase/chemistry , Animals , Cells, Cultured , Chromosomes , Embryonic Stem Cells/cytology , Genome , Mice , Promoter Regions, Genetic , RNA/genetics , Telomerase/genetics
13.
Immunity ; 50(2): 362-377.e6, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30709738

ABSTRACT

Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells.


Subject(s)
Forkhead Transcription Factors/immunology , Mutation , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Child , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Genetic Diseases, X-Linked/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Polyendocrinopathies, Autoimmune/genetics , Polyendocrinopathies, Autoimmune/immunology , Polyendocrinopathies, Autoimmune/metabolism , T-Lymphocytes, Regulatory/metabolism , Th2 Cells/metabolism
14.
Mol Cell ; 73(6): 1174-1190.e12, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30745086

ABSTRACT

Chromatin loops enable transcription-factor-bound distal enhancers to interact with their target promoters to regulate transcriptional programs. Although developmental transcription factors such as active forms of Notch can directly stimulate transcription by activating enhancers, the effect of their oncogenic subversion on the 3D organization of cancer genomes is largely undetermined. By mapping chromatin looping genome-wide in Notch-dependent triple-negative breast cancer and B cell lymphoma, we show that beyond the well-characterized role of Notch as an activator of distal enhancers, Notch regulates its direct target genes by instructing enhancer repositioning. Moreover, a large fraction of Notch-instructed regulatory loops form highly interacting enhancer and promoter spatial clusters termed "3D cliques." Loss- and gain-of-function experiments show that Notch preferentially targets hyperconnected 3D cliques that regulate the expression of crucial proto-oncogenes. Our observations suggest that oncogenic hijacking of developmental transcription factors can dysregulate transcription through widespread effects on the spatial organization of cancer genomes.


Subject(s)
Cell Transformation, Neoplastic/genetics , Chromatin/genetics , Lymphoma, B-Cell/genetics , Oncogenes , Receptors, Notch/genetics , Triple Negative Breast Neoplasms/genetics , Binding Sites , Cell Lineage/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chromatin/metabolism , Chromatin Assembly and Disassembly , Cyclin D1/genetics , Cyclin D1/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , HEK293 Cells , Humans , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Mutation , Nucleic Acid Conformation , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Notch/metabolism , Signal Transduction/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
15.
J Invest Dermatol ; 139(3): 605-614, 2019 03.
Article in English | MEDLINE | ID: mdl-30315781

ABSTRACT

The vast majority of polymorphisms for human dermatologic diseases fall in noncoding DNA regions, leading to difficulty interpreting their functional significance. Recent work using chromosome conformation capture technology in combination with chromatin immunoprecipitation (ChIP) has provided a systematic means of linking noncoding variants in active enhancer loci to putative gene targets. Here, we apply H3K27ac HiChIP high-resolution contact maps, generated from primary human T-cell subsets (CD4+ naïve, T helper type 17, and regulatory T cells), to 21 dermatologic conditions associated with single nucleotide polymorphisms from 106 genome-wide association studies. This "enhancer connectome" identified 1,492 HiChIP gene targets from 542 noncoding SNPs (P ≤ 5.0 × 10-8). SNP-containing enhancers from inflammatory skin conditions were significantly enriched at the HLA locus and also targeted several key factors from the JAK-STAT signaling pathway, but nonimmune conditions were not. A focused profiling of systemic lupus erythematosus HiChIP genes identified enhancer interactions with factors important for effector CD4+ T-cell differentiation and function, including IRF8 and members of the Ikaros family of zinc-finger proteins. Our results show the ability of the enhancer connectome to nominate functionally relevant candidates from genome-wide association study-identified variants, representing a powerful tool to guide future studies into the genomic regulatory mechanisms underlying dermatologic diseases.


Subject(s)
Enhancer Elements, Genetic/genetics , Histones/genetics , Inflammation/genetics , Lupus Erythematosus, Systemic/genetics , Skin Diseases/genetics , T-Lymphocytes, Regulatory/physiology , Th17 Cells/physiology , Cell Differentiation , Chromatin , Chromatin Immunoprecipitation , Connectome , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Ikaros Transcription Factor/genetics , Interferon Regulatory Factors/genetics , Janus Kinases/metabolism , Polymorphism, Single Nucleotide , STAT Transcription Factors , Signal Transduction
16.
Cell ; 176(1-2): 361-376.e17, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30580963

ABSTRACT

Here, we present Perturb-ATAC, a method that combines multiplexed CRISPR interference or knockout with genome-wide chromatin accessibility profiling in single cells based on the simultaneous detection of CRISPR guide RNAs and open chromatin sites by assay of transposase-accessible chromatin with sequencing (ATAC-seq). We applied Perturb-ATAC to transcription factors (TFs), chromatin-modifying factors, and noncoding RNAs (ncRNAs) in ∼4,300 single cells, encompassing more than 63 genotype-phenotype relationships. Perturb-ATAC in human B lymphocytes uncovered regulators of chromatin accessibility, TF occupancy, and nucleosome positioning and identified a hierarchy of TFs that govern B cell state, variation, and disease-associated cis-regulatory elements. Perturb-ATAC in primary human epidermal cells revealed three sequential modules of cis-elements that specify keratinocyte fate. Combinatorial deletion of all pairs of these TFs uncovered their epistatic relationships and highlighted genomic co-localization as a basis for synergistic interactions. Thus, Perturb-ATAC is a powerful strategy to dissect gene regulatory networks in development and disease.


Subject(s)
Epigenomics/methods , Gene Regulatory Networks/genetics , Single-Cell Analysis/methods , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly/physiology , Clustered Regularly Interspaced Short Palindromic Repeats/physiology , Gene Regulatory Networks/physiology , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, DNA/methods , Transcription Factors/metabolism
17.
Nat Genet ; 50(12): 1658-1665, 2018 12.
Article in English | MEDLINE | ID: mdl-30397335

ABSTRACT

Human embryonic stem cell (hESC) differentiation promises advances in regenerative medicine1-3, yet conversion of hESCs into transplantable cells or tissues remains poorly understood. Using our keratinocyte differentiation system, we employ a multi-dimensional genomics approach to interrogate the contributions of inductive morphogens retinoic acid and bone morphogenetic protein 4 (BMP4) and the epidermal master regulator p63 (encoded by TP63)4,5 during surface ectoderm commitment. In contrast to other master regulators6-9, p63 effects major transcriptional changes only after morphogens alter chromatin accessibility, establishing an epigenetic landscape for p63 to modify. p63 distally closes chromatin accessibility and promotes accumulation of H3K27me3 (trimethylated histone H3 lysine 27). Cohesin HiChIP10 visualizations of chromosome conformation show that p63 and the morphogens contribute to dynamic long-range chromatin interactions, as illustrated by TFAP2C regulation11. Our study demonstrates the unexpected dependency of p63 on morphogenetic signaling and provides novel insights into how a master regulator can specify diverse transcriptional programs based on the chromatin landscape induced by exposure to specific morphogens.


Subject(s)
Bone Morphogenetic Protein 4/pharmacology , Cell Differentiation , Chromatin Assembly and Disassembly , Keratinocytes/physiology , Transcription Factors/physiology , Tretinoin/pharmacology , Tumor Suppressor Proteins/physiology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Chromatin/drug effects , Chromatin/metabolism , Chromatin Assembly and Disassembly/drug effects , Chromatin Assembly and Disassembly/genetics , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/physiology , Epidermis/drug effects , Epidermis/physiology , Gene Expression Regulation, Developmental/drug effects , Humans , Keratinocytes/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics
18.
Science ; 362(6413)2018 10 26.
Article in English | MEDLINE | ID: mdl-30361341

ABSTRACT

We present the genome-wide chromatin accessibility profiles of 410 tumor samples spanning 23 cancer types from The Cancer Genome Atlas (TCGA). We identify 562,709 transposase-accessible DNA elements that substantially extend the compendium of known cis-regulatory elements. Integration of ATAC-seq (the assay for transposase-accessible chromatin using sequencing) with TCGA multi-omic data identifies a large number of putative distal enhancers that distinguish molecular subtypes of cancers, uncovers specific driving transcription factors via protein-DNA footprints, and nominates long-range gene-regulatory interactions in cancer. These data reveal genetic risk loci of cancer predisposition as active DNA regulatory elements in cancer, identify gene-regulatory interactions underlying cancer immune evasion, and pinpoint noncoding mutations that drive enhancer activation and may affect patient survival. These results suggest a systematic approach to understanding the noncoding genome in cancer to advance diagnosis and therapy.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Neoplasms/genetics , Neoplasms/metabolism , Regulatory Sequences, Nucleic Acid , Chromatin/genetics , DNA Footprinting , Enhancer Elements, Genetic , Genetic Loci , Humans , Immunity/genetics , Transcription Factors/metabolism , Transposases/metabolism
19.
Nature ; 559(7715): E13, 2018 07.
Article in English | MEDLINE | ID: mdl-29899441

ABSTRACT

In this Letter, analysis of steady-state regulatory T (Treg) cell percentages from Il2ra enhancer deletion (EDEL) and wild-type (WT) mice revealed no differences between them (Extended Data Fig. 9d). This analysis included two mice whose genotypes were incorrectly assigned. Even after correction of the genotypes, no significant differences in Treg cell percentages were seen when data across experimental cohorts were averaged (as was done in Extended Data Fig. 9d). However, if we normalize the corrected data to account for variation among experimental cohorts, a subtle decrease in EDEL Treg cell percentages is revealed and, using the corrected and normalized data, we have redrawn Extended Data Fig. 9d in Supplementary Fig. 1. The Supplementary Information to this Amendment contains the corrected and reanalysed Extended Data Fig. 9d. The sentence "This enhancer deletion (EDEL) strain also had no obvious T cell phenotypes at steady state (Extended Data Fig. 9)." should read: "This enhancer deletion (EDEL) strain had a small decrease in the percentage of Treg cells (Extended Data Fig. 9).". This error does not affect any of the main figures in the Letter or the data from mice with the human autoimmune-associated single nucleotide polymorphism (SNP) knocked in or with a 12-base-pair deletion at the site (12DEL). In addition, we stated in the Methods that we observed consistent immunophenotypes of EDEL mice across three founders, but in fact, we observed consistent phenotypes in mice from two founders. This does not change any of our conclusions and the original Letter has not been corrected.

20.
Cell ; 173(6): 1398-1412.e22, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29731168

ABSTRACT

Noncoding mutations in cancer genomes are frequent but challenging to interpret. PVT1 encodes an oncogenic lncRNA, but recurrent translocations and deletions in human cancers suggest alternative mechanisms. Here, we show that the PVT1 promoter has a tumor-suppressor function that is independent of PVT1 lncRNA. CRISPR interference of PVT1 promoter enhances breast cancer cell competition and growth in vivo. The promoters of the PVT1 and the MYC oncogenes, located 55 kb apart on chromosome 8q24, compete for engagement with four intragenic enhancers in the PVT1 locus, thereby allowing the PVT1 promoter to regulate pause release of MYC transcription. PVT1 undergoes developmentally regulated monoallelic expression, and the PVT1 promoter inhibits MYC expression only from the same chromosome via promoter competition. Cancer genome sequencing identifies recurrent mutations encompassing the human PVT1 promoter, and genome editing verified that PVT1 promoter mutation promotes cancer cell growth. These results highlight regulatory sequences of lncRNA genes as potential disease-associated DNA elements.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Genes, myc , RNA, Long Noncoding/genetics , Animals , Breast Neoplasms/metabolism , CRISPR-Cas Systems , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Chromatin , DNA, Neoplasm/genetics , Enhancer Elements, Genetic , Female , Gene Expression Profiling , Humans , Mice , Mice, Inbred NOD , Mutation , Neoplasm Transplantation , Promoter Regions, Genetic , RNA, Long Noncoding/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...