Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Oncol ; 31(6): 1439-47, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17982670

ABSTRACT

Induction of the B7 family molecules by 12-O-tetradecanoyl phorbol 13-acetate (TPA) has been reported, however, the mechanism by which TPA up-regulates these molecules remains poorly understood. In this study, the expression of B7-DC, -H1, -H2, and -H3 in response to TPA was markedly induced in K562 cells. TPA also induced activation of ERK, p38 mitogen-activated protein kinase (MAPK), JNK, phosphatidylinositol-3-kinase (PI-3K), or nuclear factor (NF)-kappaB. Pre-treatments with protein kinase C (PKC) inhibitors significantly inhibited TPA-induced expression of B7-DC, -H1, -H2, and -H3 mRNA as well as TPA-induced phosphorylation of ERK, p38 MAPK, JNK, and PI-3K. TPA-induced expression of B7-DC, -H1, -H2, and -H3 mRNA was abrogated by pre-treatments with inhibitors of ERK and p38 MAPK. However, inhibition of PI-3K and JNK only caused decrease of TPA-induced B7-DC mRNA and B7-H3 mRNA, respectively. TPA-induced degradation of IkappaB-alpha was markedly abrogated by treatments with PKC inhibitors, but not by treatments with inhibitors of ERK, p38 MAPK, JNK, or PI-3K. NF-kappaB inhibitors significantly attenuated the expression of B7-DC, -H1, -H2, and -H3 mRNA in response to TPA. These results suggest that TPA induces the expression of B7-DC, -H1, -H2, and -H3 mRNA in K562 cells via activation of PKC, ERK, p38 MAPK, and NF-kappaB. Distinctly, the expression of B7-DC mRNA and -H3 mRNA in response to TPA is also PI-3K- and JNK-dependent, respectively.


Subject(s)
Antigens, CD/genetics , B7-1 Antigen/genetics , Gene Expression Regulation/drug effects , Receptors, Immunologic/genetics , Tetradecanoylphorbol Acetate/pharmacology , B7 Antigens , B7-H1 Antigen , Humans , Inducible T-Cell Co-Stimulator Ligand , K562 Cells , Mitogen-Activated Protein Kinases/physiology , Phosphatidylinositol 3-Kinases/physiology , Programmed Cell Death 1 Ligand 2 Protein , Protein Kinase C/physiology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL