Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Physiology (Bethesda) ; 38(6): 0, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37668550

ABSTRACT

The array of ion channels and transporters expressed in cell membranes, collectively referred to as the transportome, is a complex and multifunctional molecular machinery; in particular, at the plasma membrane level it finely tunes the exchange of biomolecules and ions, acting as a functionally adaptive interface that accounts for dynamic plasticity in the response to environmental fluctuations and stressors. The transportome is responsible for the definition of membrane potential and its variations, participates in the transduction of extracellular signals, and acts as a filter for most of the substances entering and leaving the cell, thus enabling the homeostasis of many cellular parameters. For all these reasons, physiologists have long been interested in the expression and functionality of ion channels and transporters, in both physiological and pathological settings and across the different domains of life. Today, thanks to the high-throughput technologies of the postgenomic era, the omics approach to the study of the transportome is becoming increasingly popular in different areas of biomedical research, allowing for a more comprehensive, integrated, and functional perspective of this complex cellular apparatus. This article represents a first effort for a systematic review of the scientific literature on this topic. Here we provide a brief overview of all those studies, both primary and meta-analyses, that looked at the transportome as a whole, regardless of the biological problem or the models they used. A subsequent section is devoted to the methodological aspect by reviewing the most important public databases annotating ion channels and transporters, along with the tools they provide to retrieve such information. Before conclusions, limitations and future perspectives are also discussed.


Subject(s)
Biomedical Research , Humans , Homeostasis , Membrane Potentials
2.
Polymers (Basel) ; 15(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571080

ABSTRACT

The mechanical and biological behaviors of PMMA/Al2O3 composites incorporating 30 wt.%, 40 wt.%, and 50 wt.% of Al2O3 were thoroughly characterized as regards to their possible application in implant-supported prostheses. The Al2O3 particles accounted for an increase in the flexural modulus of PMMA. The highest value was recorded for the composite containing 40 wt.% Al2O3 (4.50 GPa), which was about 18% higher than that of its unfilled counterpart (3.86 GPa). The Al2O3 particles caused a decrease in the flexural strength of the composites, due to the presence of filler aggregates and voids, though it was still satisfactory for the intended application. The roughness (Ra) and water contact angle had the same trend, ranging from 1.94 µm and 77.2° for unfilled PMMA to 2.45 µm and 105.8° for the composite containing the highest alumina loading, respectively, hence influencing both the protein adsorption and cell adhesion. No cytotoxic effects were found, confirming that all the specimens are biocompatible and capable of sustaining cell growth and proliferation, without remarkable differences at 24 and 48 h. Finally, Al2O3 was able to cause strong cell responses (cell orientation), thus guiding the tissue formation in contact with the composite itself and not enhancing its osteoconductive properties, supporting the PMMA composite's usage in the envisaged application.

3.
J Physiol ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37635695

ABSTRACT

Living organisms are multiscale complex systems that have evolved high degrees of multifunctionality and redundancy in the structure-function relationship. A number of factors, only in part determined genetically, affect the jobs of proteins. The overall structural organization confers unique molecular properties that provide the potential to perform a pattern of activities, some of which are co-opted by specific environments. The variety of multifunctional proteins is expanding, but most cases are handled individually and according to the still dominant 'one structure-one function' approach, which relies on the attribution of canonical names typically referring to the first task identified for a given protein. The present topical review focuses on the multifunctionality of ion channels as a paradigmatic example. Mounting evidence reports the ability of many ion channels (including members of voltage-dependent, ligand-gated and transient receptor potential families) to exert biological effects independently of their ion conductivity. 'Functionally based' nomenclature (the practice of naming a protein or family of proteins based on a single purpose) is a conceptual bias for three main reasons: (i) it increases the amount of ambiguity, deceiving our understanding of the multiple contributions of biomolecules that is the heart of the complexity; (ii) it is in stark contrast to protein evolution dynamics, largely based on multidomain arrangement; and (iii) it overlooks the crucial role played by the microenvironment in adjusting the actions of cell structures and in tuning protein isoform diversity to accomplish adaptational requirements. Biological information in protein physiology is distributed among different entwined layers working as the primary 'locus' of natural selection and of evolutionary constraints.

4.
mBio ; 14(4): e0074923, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37477430

ABSTRACT

The human cytomegalovirus (HCMV) US12 gene family contributes to virus-host interactions by regulating the virus' cell tropism and its evasion of host innate immune responses. US21, one of the 10 US12 genes (US12-US21), is a descendant of a captured cellular transmembrane BAX inhibitor motif-containing gene. It encodes a 7TMD endoplasmic reticulum (ER)-resident viroporin (pUS21) capable of reducing the Ca2+ content of ER stores, which, in turn, protects cells against apoptosis. Since regulation of Ca2+ homeostasis affects a broad range of cellular responses, including cell motility, we investigated whether pUS21 might also interfere with this cytobiological consequence of Ca2+ signaling. Indeed, deletion of the US21 gene impaired the ability of HCMV-infected cells to migrate, whereas expression of US21 protein stimulated cell migration and adhesion, as well as focal adhesion (FA) dynamics, in a way that depended on its ability to manipulate ER Ca2+ content. Mechanistic studies revealed pUS21-mediated cell migration to involve calpain 2 activation since its inhibition prevented the viroporin's effects on cell motility. Pertinently, pUS21 expression stimulated a store-operated Ca2+ entry (SOCE) mechanism that may determine the activation of calpain 2 by promoting Ca2+ entry. Furthermore, pUS21 was observed to interact with talin-1, a calpain 2 substrate, and crucial protein component of FA complexes. A functional consequence of this interaction was confirmed by talin-1 knockdown, which abrogated the pUS21-mediated increase in cell migration. Together, these results indicate the US21-encoded viroporin to be a viral regulator of cell adhesion and migration in the context of HCMV infection. IMPORTANCE Human cytomegalovirus (HCMV) is an opportunistic pathogen that owes part of its success to the capture, duplication, and tuning of cellular genes to generate modern viral proteins which promote infection and persistence in the host by interfering with many cell biochemical and physiological pathways. The US21 viral protein provides an example of this evolutionary strategy: it is a cellular-derived calcium channel that manipulates intracellular calcium homeostasis to confer edges to HCMV replication. Here, we report on the characterization of a novel function of the US21 protein as a viral regulator of cell migration and adhesion through mechanisms involving its calcium channel activity. Characterization of HCMV multifunctional regulatory proteins, like US21, supports the better understanding of viral pathogenesis and may open avenues for the design of new antiviral strategies that exploit their functions.


Subject(s)
Cytomegalovirus , Viroporin Proteins , Humans , Cytomegalovirus/physiology , Viroporin Proteins/metabolism , Calpain/genetics , Calpain/metabolism , Talin/metabolism , Viral Proteins/metabolism , Calcium Channels/metabolism , Cell Movement
5.
Antioxidants (Basel) ; 12(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36978936

ABSTRACT

The extracellular milieu is a rich source of different stimuli and stressors. Some of them depend on the chemical-physical features of the matrix, while others may come from the 'outer' environment, as in the case of mechanical loading applied on the bones. In addition to these forces, a plethora of chemical signals drives cell physiology and fate, possibly leading to dysfunctions when the homeostasis is disrupted. This variety of stimuli triggers different responses among the tissues: bones represent a particular milieu in which a fragile balance between mechanical and metabolic demands should be tuned and maintained by the concerted activity of cell biomolecules located at the interface between external and internal environments. Plasma membrane ion channels can be viewed as multifunctional protein machines that act as rapid and selective dual-nature hubs, sensors, and transducers. Here we focus on some multisensory ion channels (belonging to Piezo, TRP, ASIC/EnaC, P2XR, Connexin, and Pannexin families) actually or potentially playing a significant role in bone adaptation to three main stressors, mechanical forces, oxidative stress, and acidosis, through their effects on bone cells including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. Ion channel-mediated bone remodeling occurs in physiological processes, aging, and human diseases such as osteoporosis, cancer, and traumatic events.

6.
Biomolecules ; 12(11)2022 11 20.
Article in English | MEDLINE | ID: mdl-36421732

ABSTRACT

Dental implants have dramatically changed the rehabilitation procedures in dental prostheses but are hindered by the possible onset of peri-implantitis. This paper aims to assess whether an anodization process applied to clinically used surfaces could enhance the adhesion of fibroblasts and reduce bacterial adhesion using as a reference the untreated machined surface. To this purpose, four different surfaces were prepared: (i) machined (MAC), (ii) machined and anodized (Y-MAC), (iii) anodized after sand-blasting and acid etching treatment (Y-SL), and (iv) anodized after double acid etching (Y-DM). All specimens were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Moreover, the mean contact angle in both water and diiodomethane as well as surface free energy calculation was assessed. To evaluate changes in terms of biological responses, we investigated the adhesion of Streptococcus sanguinis (S. sanguinis) and Enterococcus faecalis (E. faecalis), fetal bovine serum (FBS) adsorption, and the early response of fibroblasts in terms of cell adhesion and viability. We found that the anodization reduced bacterial adhesion, while roughened surfaces outperformed the machined ones for protein adsorption, fibroblast adhesion, and viability independently of the treatment. It can be concluded that surface modification techniques such as anodization are valuable options to enhance the performance of dental implants.


Subject(s)
Dental Implants , Surface Properties , Titanium/chemistry , Bacterial Adhesion , Cell Adhesion
7.
Biology (Basel) ; 11(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36138825

ABSTRACT

Tens of thousands of gene expression data sets describing a variety of model organisms in many different pathophysiological conditions are currently stored in publicly available databases such as the Gene Expression Omnibus (GEO) and ArrayExpress (AE). As microarray technology is giving way to RNA-seq, it becomes strategic to develop high-level tools of analysis to preserve access to this huge amount of information through the most sophisticated methods of data preparation and processing developed over the years, while ensuring, at the same time, the reproducibility of the results. To meet this need, here we present bioTEA (biological Transcript Expression Analyzer), a novel software tool that combines ease of use with the versatility and power of an R/Bioconductor-based differential expression analysis, starting from raw data retrieval and preparation to gene annotation. BioTEA is an R-coded pipeline, wrapped in a Python-based command line interface and containerized with Docker technology. The user can choose among multiple options-including gene filtering, batch effect handling, sample pairing, statistical test type-to adapt the algorithm flow to the structure of the particular data set. All these options are saved in a single text file, which can be easily shared between different laboratories to deterministically reproduce the results. In addition, a detailed log file provides accurate information about each step of the analysis. Overall, these features make bioTEA an invaluable tool for both bioinformaticians and wet-lab biologists interested in transcriptomics. BioTEA is free and open-source.

8.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35805902

ABSTRACT

Melanoma is a relatively rare disease worldwide; nevertheless, it has a great relevance in some countries, such as in Europe. In order to shed some light upon the transcriptional profile of skin melanoma, we compared the gene expression of six independent tumours (all progressed towards metastatic disease and with wild type BRAF) to the expression profile of non-dysplastic melanocytes (considered as a healthy control) in a pilot study. Paraffin-embedded samples were manually micro-dissected to obtain enriched samples, and then, RNA was extracted and analysed through a microarray-based approach. An exhaustive bioinformatics analysis was performed to identify differentially expressed transcripts between the two groups, as well as enriched functional terms. Overall, 50 up- and 19 downregulated transcripts were found to be significantly changed in the tumour compared to the control tissue. Among the upregulated transcripts, the majority belonged to the immune response group and to the proteasome, while most of the downregulated genes were related to cytosolic ribosomes. A Gene Set Enrichment Analysis (GSEA), along with the RNA-Seq data retrieved from the TCGA/GTEx databases, confirmed the general trend of downregulation affecting cytoribosome proteins. In contrast, transcripts coding for mitoribosome proteins showed the opposite trend.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Skin Neoplasms , Humans , Melanocytes/metabolism , Melanoma/enzymology , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Neoplasm Metastasis , Pilot Projects , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism
9.
Cancers (Basel) ; 14(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35681724

ABSTRACT

The tumoral microenvironment often displays peculiar features, including accumulation of extracellular ATP, hypoxia, low pH-acidosis, as well as an imbalance in zinc (Zn2+) and calcium (Ca2+). We previously reported the ability of some purinergic agonists to exert an anti-migratory activity on tumor-derived human endothelial cells (TEC) only when applied at a high concentration. They also trigger calcium signals associated with release from intracellular stores and calcium entry from the external medium. Here, we provide evidence that high concentrations of BzATP (100 µM), a potent agonist of P2X receptors, decrease migration in TEC from different tumors, but not in normal microvascular ECs (HMEC). The same agonist evokes a calcium increase in TEC from the breast and kidney, as well as in HMEC, but not in TEC from the prostate, suggesting that the intracellular pathways responsible for the P2X-induced impairment of TEC migration could vary among different tumors. The calcium signal is mainly due to a long-lasting calcium entry from outside and is strictly dependent on the presence of the receptor occupancy. Low pH, as well as high extracellular Zn2+ and Ca2+, interfere with the response, a distinctive feature typically found in some P2X purinergic receptors. This study reveals that a BzATP-sensitive pathway impairs the migration of endothelial cells from different tumors through mechanisms finely tuned by environmental factors.

10.
Rev Physiol Biochem Pharmacol ; 182: 111-137, 2022.
Article in English | MEDLINE | ID: mdl-32809072

ABSTRACT

Calcium (Ca2+)-permeable channels are key players in different processes leading to blood vessel formation via sprouting angiogenesis, including endothelial cell (EC) proliferation and migration, as well as in controlling vascular features which are typical of the tumor vasculature.In this review we present an up-to-date and critical view on the role of Ca2+-permeable channels in tumor vascularization, emphasizing on the dual communication between growth factors (mainly VEGF) and Ca2+ signals. Due to the complexity of the tumor microenvironment (TME) as a source of multiple stimuli acting on the endothelium, we aim to discuss the close interaction between chemical and physical challenges (hypoxia, oxidative stress, mechanical stress) and endothelial Ca2+-permeable channels, focusing on transient receptor potential (TRP), store-operated Ca2+ channels (SOCs), and mechanosensitive Piezo channels. This approach will depict their crucial contribution in regulating key properties of tumor blood vessels, such as recruitment of endothelial progenitors cells (EPCs) in the early steps of tumor vascularization, abnormal EC migration and proliferation, and increased vascular permeability. Graphical abstract depicting the functional role of Ca2+-permeable TRP, SOCs and Piezo channels in the biological processes regulating tumor angiogenesis in presence of both chemical (oxidative stress and oxygen levels) and mechanical stimuli (ECM stiffness). SOCs store-operated Ca2+ channels, TRPA transient receptor potential ankyrin, TRPV transient receptor potential vanilloid, TRPC transient receptor potential canonical, TRPM transient receptor potential melastatin, TRPM transient receptor potential vanilloid, O2 oxygen, ECM extracellular matrix.


Subject(s)
Neoplasms , TRPM Cation Channels , Transient Receptor Potential Channels , Calcium/metabolism , Calcium Channels/metabolism , Cues , Humans , Oxygen/metabolism , Transient Receptor Potential Channels/metabolism , Tumor Microenvironment
11.
Biomedicines ; 9(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34829786

ABSTRACT

The crosstalk among cancer cells (CCs) and stromal cells within the tumor microenvironment (TME) has a prominent role in cancer progression. The significance of endothelial cells (ECs) in this scenario relies on multiple vascular functions. By forming new blood vessels, ECs support tumor growth. In addition to their angiogenic properties, tumor-associated ECs (TECs) establish a unique vascular niche that actively modulates cancer development by shuttling a selected pattern of factors and metabolites to the CC. The profile of secreted metabolites is strictly dependent on the metabolic status of the cell, which is markedly perturbed in TECs. Recent evidence highlights the involvement of heme metabolism in the regulation of energy metabolism in TECs. The present study shows that interfering with endothelial heme metabolism by targeting the cell membrane heme exporter Feline Leukemia Virus subgroup C Receptor 1a (FLVCR1a) in TECs, resulted in enhanced fatty acid oxidation (FAO). Moreover, FAO-derived acetyl-CoA was partly consumed through ketogenesis, resulting in ketone bodies (KBs) accumulation in FLVCR1a-deficient TECs. Finally, the results from this study also demonstrate that TECs-derived KBs can be secreted in the extracellular environment, inducing a metabolic rewiring in the CC. Taken together, these data may contribute to finding new metabolic vulnerabilities for cancer therapy.

12.
Biomedicines ; 9(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34572271

ABSTRACT

The use of mesenchymal stem cells (MSCs) for regenerative purposes has become common in a large variety of diseases. In the dental and maxillofacial field, there are emerging clinical needs that could benefit from MSC-based therapeutic approaches. Even though MSCs can be isolated from different tissues, such as bone marrow, adipose tissue, etc., and are known for their multilineage differentiation, their different anatomical origin can affect the capability to differentiate into a specific tissue. For instance, MSCs isolated from the oral cavity might be more effective than adipose-derived stem cells (ASCs) for the treatment of dental defects. Indeed, in the oral cavity, there are different sources of MSCs that have been individually proposed as promising candidates for tissue engineering protocols. The therapeutic strategy based on MSCs can be direct, by using cells as components of the tissue to be regenerated, or indirect, aimed at delivering local growth factors, cytokines, and chemokines produced by the MSCs. Here, the authors outline the major sources of mesenchymal stem cells attainable from the oral cavity and discuss their possible usage in some of the most compelling therapeutic frontiers, such as periodontal disease and dental pulp regeneration.

13.
Cancers (Basel) ; 13(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34439343

ABSTRACT

Because of its high incidence and poor prognosis, colorectal cancer (CRC) represents an important health issue in several countries. As with other carcinomas, the so-called tumour microenvironment (TME) has been shown to play key roles in CRC progression and related therapeutical outcomes, even though a deeper understanding of the underlying molecular mechanisms is needed to devise new treatment strategies. For some years now, omics technologies and consolidated bioinformatics pipelines have allowed scientists to access large amounts of biologically relevant information, even when starting from small tissue samples; thus, in order to shed new light upon the role of the TME in CRC, we compared the gene expression profiles of 6 independent tumour tissues (all progressed towards metastatic disease) to the expression profile of the surrounding stromata. To do this, paraffin-embedded whole tissues were first microdissected to obtain samples enriched with tumour and stromal cells, respectively. Afterwards, RNA was extracted and analysed using a microarray-based approach. A thorough bioinformatics analysis was then carried out to identify transcripts differentially expressed between the two groups and possibly enriched functional terms. Overall, 193 genes were found to be significantly downregulated in tumours compared to the paired stromata. The functional analysis of the downregulated gene list revealed three principal macro areas of interest: the extracellular matrix, cell migration, and angiogenesis. Conversely, among the upregulated genes, the main alterations detected by the functional annotation were related to the ribosomal proteins (rProteins) of both the large (60S) and small (40S) subunits of the cytosolic ribosomes. Subsequent gene set enrichment analysis (GSEA) confirmed the massive overexpression of most cytosolic-but not mitochondrial-ribosome rProteins.

14.
Antioxidants (Basel) ; 10(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34439477

ABSTRACT

Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.

16.
Int J Mol Sci ; 22(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800828

ABSTRACT

Hypercholesterolemia is one of the major causes of cardiovascular disease, the risk of which is further increased if other forms of dyslipidemia occur. Current therapeutic strategies include changes in lifestyle coupled with drug administration. Statins represent the most common therapeutic approach, but they may be insufficient due to the onset of resistance mechanisms and side effects. Consequently, patients with mild hypercholesterolemia prefer the use of food supplements since these are perceived to be safer. Here, we investigate the phytochemical profile and cholesterol-lowering potential of Protium heptaphyllum gum resin extract (PHE). Chemical characterization via HPLC-APCI-HRMS2 and GC-FID/MS identified 13 compounds mainly belonging to ursane, oleanane, and tirucallane groups. Studies on human hepatocytes have revealed how PHE is able to reduce cholesterol production and regulate the expression of proteins involved in its metabolism. (HMGCR, PCSK9, LDLR, FXR, IDOL, and PPAR). Moreover, measuring the inhibitory activity of PHE against HMGR, moderate inhibition was recorded. Finally, molecular docking studies identified acidic tetra- and pentacyclic triterpenoids as the main compounds responsible for this action. In conclusion, our study demonstrates how PHE may be a useful alternative to contrast hypercholesterolemia, highlighting its potential as a sustainable multitarget natural extract for the nutraceutical industry that is rapidly gaining acceptance as a source of health-promoting compounds.


Subject(s)
Anticholesteremic Agents/pharmacology , Hydrogen/chemistry , Plant Gums/chemistry , Resins, Plant/chemistry , Triterpenes/pharmacology , Anticholesteremic Agents/isolation & purification , Catalytic Domain/drug effects , Cholesterol/metabolism , Chromatography, High Pressure Liquid , Dietary Supplements , Drug Evaluation, Preclinical , Flame Ionization , Gas Chromatography-Mass Spectrometry , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lovastatin/pharmacology , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Triterpenes/isolation & purification
17.
Biomedicines ; 9(3)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33800030

ABSTRACT

Mesenchymal stem cells (MSCs) can be harvested from different sites in the oral cavity, representing a reservoir of cells useful for regenerative purposes. As direct comparisons between at least two types of MSCs deriving from the same patient are surprisingly rare in scientific literature, we isolated and investigated the osteoinductive potential of dental pulp stem cells (DPSCs) and buccal fat pad stem cells (BFPSCs). MSCs were isolated from the third molar dental pulp and buccal fat pads of 12 patients. The number of viable cells was quantified through manual count. Proliferation and osteodifferentiation assays, flow cytometry analysis of cell phenotypes, and osteocalcin release in vitro were performed. The isolation of BFPSCs and DPSCs was successful in 7 out of 12 (58%) and 3 out of 12 (25%) of retrieved samples, respectively. The yield of cells expressing typical stem cell markers and the level of proliferation were higher in BFPSCs than in DPSCs. Both BFP-SCs and DPSCs differentiated into osteoblast-like cells and were able to release a mineralized matrix. The release of osteocalcin, albeit greater for BFPSCs, did not show any significant difference between BFPSCs and DPSCs. The yield of MSCs depends on their site of origin as well as on the protocol adopted for their isolation. Our data show that BFP is a valuable source for the derivation of MSCs that can be used for regenerative treatments.

18.
Pharmacol Res ; 168: 105581, 2021 06.
Article in English | MEDLINE | ID: mdl-33781873

ABSTRACT

In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.


Subject(s)
Brain Diseases/therapy , Brain/drug effects , COVID-19/therapy , Heart Diseases/therapy , Heart/drug effects , Adrenal Cortex Hormones/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Antiviral Agents/administration & dosage , Brain/immunology , Brain/metabolism , Brain Diseases/immunology , Brain Diseases/metabolism , COVID-19/immunology , COVID-19/metabolism , Critical Care/methods , Critical Illness/therapy , Dietary Supplements , Functional Food , Heart Diseases/immunology , Heart Diseases/metabolism , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Microvessels/drug effects , Microvessels/immunology , Microvessels/metabolism , Multiple Organ Failure/immunology , Multiple Organ Failure/metabolism , Multiple Organ Failure/therapy , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
19.
Front Physiol ; 12: 813547, 2021.
Article in English | MEDLINE | ID: mdl-35087424

ABSTRACT

Bone formation involves a complex crosstalk between endothelial cells (EC) and osteodifferentiating stem cells. This functional interplay is greatly mediated by the paracrine and autocrine action of soluble factors released at the vasculature-bone interface. This study elucidates the molecular and functional responses triggered by this intimate interaction. In this study, we showed that human dermal microvascular endothelial cells (HMEC) induced the expression of pro-angiogenic factors in stem cells from human exfoliated deciduous teeth (SHED) and sustain their osteo-differentiation at the same time. In contrast, osteodifferentiating SHED increased EC recruitment and promoted the formation of complex vascular networks. Moreover, HMEC enhanced anaerobic glycolysis in proliferating SHED without compromising their ability to undergo the oxidative metabolic shift required for adequate osteo-differentiation. Taken together, these findings provide novel insights into the molecular mechanism underlying the synergistic cooperation between EC and stem cells during bone tissue renewal.

20.
J Cell Physiol ; 235(12): 10110-10115, 2020 12.
Article in English | MEDLINE | ID: mdl-32567069

ABSTRACT

Here we present a new Fiji/ImageJ2 plugin called Multiparametric Morphometric Analysis of EUcaryotic cellS (MORPHEUS), designed for the automated evaluation of cell morphometry from images acquired by fluorescence microscopy. MORPHEUS works with sampling distributions to learn-in an unsupervised manner and by a nonparametric approach-how to recognize the cells suitable for subsequent analysis. Afterward, the algorithm performs the evaluation of the most relevant cell-shape descriptors over the full set of detected cells. Optionally, also the extraction of nucleus features and a double-scale analysis of orientation can be performed. The whole algorithm is implemented as a one-click procedure, thus minimizing the user's intervention. By reducing biases and errors of human origin, MORPHEUS is intended to be a useful tool to enhance reproducibility in the bioimage analysis.


Subject(s)
Cell Nucleus/ultrastructure , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence , Software , Algorithms , Eukaryota/ultrastructure , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...