Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Exerc Sci ; 11(4): 68-74, 2018.
Article in English | MEDLINE | ID: mdl-29795730

ABSTRACT

Softball and baseball are games that require multiple skill sets such as throwing, hitting and fielding. Players spend a copious amount of time in batting practice in order to be successful hitters. Variables commonly associated with successful hitting include bat velocity and torso rotation. The concept of overspeed bodyweight assistance (BWA) has shown increases in vertical jump and sprint times, but not hip rotation and batting. The purpose of this study was to examine the effects of assisted hip rotation on bat velocity. Twenty-one male and female recreational softball and baseball players (15 males, age 23.8 ± 3.1yrs; height 177.67 ± 6.71cm; body mass 85.38 ± 14.83kg; 6 females, age 21.5 ± 2.1yrs; height 162.20 ± 9.82cm; body mass 60.28 ± 9.72kg) volunteered to participate. Four different BWA conditions (0%, 10%, 20%, and 30%) were randomly applied and their effects on bat velocity were analyzed. Subjects performed three maximal effort swings under each condition in a custom measurement device and average bat velocity (MPH) was used for analysis. A mixed factor ANOVA revealed no interaction (p=0.841) or main effect for condition, but there was a main effect for sex where males had greater bat velocity (43.82±4.40 - 0% BWA, 41.52±6.09 - 10% BWA, 42.59±7.24 - 20% BWA, 42.69±6.42 - 30% BWA) than females (32.57±5.33 - 0% BWA, 31.69±3.40 - 10% BWA, 32.43±5.06 - 20% BWA, 32.08±4.83 - 30% BWA) across all conditions Using the concept of overspeed training with assisted hip rotation up to 30% BWA did not result in an increase in bat velocity. Future research should examine elastic band angle and hip translation at set-up.

2.
Int J Exerc Sci ; 10(7): 1076-1084, 2017.
Article in English | MEDLINE | ID: mdl-29170708

ABSTRACT

Plyometric exercise is popular in commercial exercise programs aiming to maximize energy expenditure for weight loss. However, the effect of plyometric exercise on blood glucose is unknown. The purpose of this study was to investigate the effect of relatively high intensity plyometric exercise on blood glucose. Thirteen subjects (6 females age= 21.8 ± 1.0 yrs.; height= 163.7 ± 7.8 cm; mass= 60.8 ± 6.7 kg and 7 males age= 22.0 ± 2.6 yrs.; height= 182.3 ± 3.6 cm; mass= 87.4 ± 12.5 kg) volunteered to participate. Subjects completed two random conditions on two separate days, consisting of either five sets of 10 maximal effort countermovement squat jumps (SJ) with 50 seconds' rest between sets or quiet sitting (SIT) for the time equated to the SJ duration (~4min). Immediately after each condition, subjects drank 75g of anhydrous glucose (CHO) in 100ml of water. Blood glucose measurements were taken via finger prick pre and immediately post SJ or SIT, and 5, 15, 30, and 60 min post. A 2×6 (condition × time) ANOVA revealed a significant interaction where SJ blood glucose was lower at 15 (114.0 ± 14.6 mg/dl) and 30 (142.1 ± 22.5 mg/dl) min compared to SIT (15min 130.8 ± 14.0 mg/dl and 30min 159.3 ± 21.0 mg/dl). The current plyometric protocol attenuated CHO-induced blood glucose at 15 and 30 min. This may be due to increased physiological stress applied to the muscles, thus increasing muscular glucose uptake.

3.
J Strength Cond Res ; 31(5): 1192-1197, 2017 May.
Article in English | MEDLINE | ID: mdl-28151781

ABSTRACT

Munger, CN, Archer, DC, Leyva, WD, Wong, MA, Coburn, JW, Costa, PB, and Brown, LE. Acute effects of eccentric overload on concentric front squat performance. J Strength Cond Res 31(5): 1192-1197, 2017-Eccentric overload is used to enhance performance. The purpose of this study was to investigate the acute effects of eccentric overload on concentric front squat performance. Twenty resistance-trained men (age = 23.80 ± 1.82 years, height = 176.95 ± 5.21 cm, mass = 83.49 ± 10.43 kg, 1 repetition maximum [1RM] front squat = 131.02 ± 21.32 kg) volunteered. A dynamic warm-up and warm-up sets of front squat were performed. Eccentric hooks were added to the barbell. They descended for 3 seconds, until eccentric hooks released, and performed the concentric phase as fast as possible. There were 3 randomly ordered conditions with the concentric phase always at 90% 1RM and the eccentric phase at 105, 110, and 120% of 1RM. Two repetitions were performed for each condition. A repeated measures analysis of variance was used to determine differences. For peak velocity, there were main effects for time and condition (p < 0.05), where post (1.01 ± 0.10 m·s) was greater than pre (0.96 ± 0.11 m·s) and 120% (1.03 ± 1.11 m·s) was greater than 105% (0.99 ± 0.13 m·s). For peak power, there was a main effect for condition where 120% (2,225.00 ± 432.37 W) was greater than 105% (2,021.84 ± 563.53 W). For peak ground reaction force, there were main effects for time and condition, where post was greater than pre and 120% was greater than 105%. For the rate of force development, there was no interaction or main effects. Eccentric overload enhanced concentric velocity and power; therefore, it can be used by strength coaches and athletes during the power phase of a training program. It can also be used to prescribe supramaximal loads and could be a tool to supplement the clean exercise because the front squat is a precursor.


Subject(s)
Exercise/physiology , Muscle Contraction , Muscle, Skeletal/physiology , Adult , Exercise Test , Humans , Male , Muscle Strength , Physical Exertion/physiology , Resistance Training/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...