Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(14): eadj9305, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569042

ABSTRACT

The power and scope of disease modeling can be markedly enhanced through the incorporation of broad genetic diversity. The introduction of pathogenic mutations into a single inbred mouse strain sometimes fails to mimic human disease. We describe a cross-species precision disease modeling platform that exploits mouse genetic diversity to bridge cell-based modeling with whole organism analysis. We developed a universal protocol that permitted robust and reproducible neural differentiation of genetically diverse human and mouse pluripotent stem cell lines and then carried out a proof-of-concept study of the neurodevelopmental gene DYRK1A. Results in vitro reliably predicted the effects of genetic background on Dyrk1a loss-of-function phenotypes in vivo. Transcriptomic comparison of responsive and unresponsive strains identified molecular pathways conferring sensitivity or resilience to Dyrk1a1A loss and highlighted differential messenger RNA isoform usage as an important determinant of response. This cross-species strategy provides a powerful tool in the functional analysis of candidate disease variants identified through human genetic studies.


Subject(s)
Pluripotent Stem Cells , Animals , Mice , Humans , Phenotype
2.
Elife ; 122024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669177

ABSTRACT

Gene expression is known to be affected by interactions between local genetic variation and DNA accessibility, with the latter organized into three-dimensional chromatin structures. Analyses of these interactions have previously been limited, obscuring their regulatory context, and the extent to which they occur throughout the genome. Here, we undertake a genome-scale analysis of these interactions in a genetically diverse population to systematically identify global genetic-epigenetic interaction, and reveal constraints imposed by chromatin structure. We establish the extent and structure of genotype-by-epigenotype interaction using embryonic stem cells derived from Diversity Outbred mice. This mouse population segregates millions of variants from eight inbred founders, enabling precision genetic mapping with extensive genotypic and phenotypic diversity. With 176 samples profiled for genotype, gene expression, and open chromatin, we used regression modeling to infer genetic-epigenetic interactions on a genome-wide scale. Our results demonstrate that statistical interactions between genetic variants and chromatin accessibility are common throughout the genome. We found that these interactions occur within the local area of the affected gene, and that this locality corresponds to topologically associated domains (TADs). The likelihood of interaction was most strongly defined by the three-dimensional (3D) domain structure rather than linear DNA sequence. We show that stable 3D genome structure is an effective tool to guide searches for regulatory elements and, conversely, that regulatory elements in genetically diverse populations provide a means to infer 3D genome structure. We confirmed this finding with CTCF ChIP-seq that revealed strain-specific binding in the inbred founder mice. In stem cells, open chromatin participating in the most significant regression models demonstrated an enrichment for developmental genes and the TAD-forming CTCF-binding complex, providing an opportunity for statistical inference of shifting TAD boundaries operating during early development. These findings provide evidence that genetic and epigenetic factors operate within the context of 3D chromatin structure.


Subject(s)
Chromatin , Epigenesis, Genetic , Genome , Animals , Mice , Chromatin/metabolism , Chromatin/genetics , Genetic Variation , Embryonic Stem Cells/metabolism
3.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328145

ABSTRACT

Xenografting human cancer tissues into mice to test new cures against cancers is critical for understanding and treating the disease. However, only a few inbred strains of mice are used to study cancers, and derivatives of mainly one strain, mostly NOD/ShiLtJ, are used for therapy efficacy studies. As it has been demonstrated when human cancer cell lines or patient-derived tissues (PDX) are xenografted into mice, the neoplastic cells are human but the supporting cells that comprise the tumor (the stroma) are from the mouse. Therefore, results of studies of xenografted tissues are influenced by the host strain. We previously published that when the same neoplastic cells are xenografted into different mouse strains, the pattern of tumor growth, histology of the tumor, number of immune cells infiltrating the tumor, and types of circulating cytokines differ depending on the strain. Therefore, to better comprehend the behavior of cancer in vivo, one must xenograft multiple mouse strains. Here we describe and report a series of methods that we used to reveal the genes and proteins expressed when the same cancer cell line, MDA-MB-231, is xenografted in different hosts. First, using proteomic analysis, we show how to use the same cell line in vivo to reveal the protein changes in the neoplastic cell that help it adapt to its host. Then, we show how different hosts respond molecularly to the same cell line. We also find that using multiple strains can reveal a more suitable host than those traditionally used for a "difficult to xenograft" PDX. In addition, using complex trait genetics, we illustrate a feasible method for uncovering the alleles of the host that support tumor growth. Finally, we demonstrate that Diversity Outbred mice, the epitome of a model of mouse-strain genetic diversity, can be xenografted with human cell lines or PDX using 2-deoxy-D-glucose treatment.

4.
Cell Genom ; 3(4): 100283, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37082146

ABSTRACT

Genetic background drives phenotypic variability in pluripotent stem cells (PSCs). Most studies to date have used transcript abundance as the primary molecular readout of cell state in PSCs. We performed a comprehensive proteogenomics analysis of 190 genetically diverse mouse embryonic stem cell (mESC) lines. The quantitative proteome is highly variable across lines, and we identified pluripotency-associated pathways that were differentially activated in the proteomics data that were not evident in transcriptome data from the same lines. Integration of protein abundance to transcript levels and chromatin accessibility revealed broad co-variation across molecular layers as well as shared and unique drivers of quantitative variation in pluripotency-associated pathways. Quantitative trait locus (QTL) mapping localized the drivers of these multi-omic signatures to genomic hotspots. This study reveals post-transcriptional mechanisms and genetic interactions that underlie quantitative variability in the pluripotent proteome and provides a regulatory map for mESCs that can provide a basis for future mechanistic studies.

5.
Genome Biol ; 24(1): 52, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944993

ABSTRACT

BACKGROUND: Phosphorylation of proteins is a key step in the regulation of many cellular processes including activation of enzymes and signaling cascades. The abundance of a phosphorylated peptide (phosphopeptide) is determined by the abundance of its parent protein and the proportion of target sites that are phosphorylated. RESULTS: We quantified phosphopeptides, proteins, and transcripts in heart, liver, and kidney tissue samples of mice from 58 strains of the Collaborative Cross strain panel. We mapped ~700 phosphorylation quantitative trait loci (phQTL) across the three tissues and applied genetic mediation analysis to identify causal drivers of phosphorylation. We identified kinases, phosphatases, cytokines, and other factors, including both known and potentially novel interactions between target proteins and genes that regulate site-specific phosphorylation. Our analysis highlights multiple targets of pyruvate dehydrogenase kinase 1 (PDK1), a regulator of mitochondrial function that shows reduced activity in the NZO/HILtJ mouse, a polygenic model of obesity and type 2 diabetes. CONCLUSIONS: Together, this integrative multi-omics analysis in genetically diverse CC strains provides a powerful tool to identify regulators of protein phosphorylation. The data generated in this study provides a resource for further exploration.


Subject(s)
Diabetes Mellitus, Type 2 , Mice , Animals , Phosphorylation , Diabetes Mellitus, Type 2/genetics , Multiomics , Quantitative Trait Loci , Peptides/genetics
6.
bioRxiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-35233576

ABSTRACT

Inflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2. Infection of CC x K18- hACE2 resulted in a spectrum of survival, viral replication kinetics, and immune profiles. Importantly, in contrast to the K18-hACE2 model, early type I interferon (IFN-I) and regulated proinflammatory responses were required for control of SARS-CoV-2 replication in PWK x K18-hACE2 mice that were highly resistant to disease. Thus, virus dynamics and inflammation observed in COVID-19 can be modeled in diverse mouse strains that provide a genetically tractable platform for understanding anti-coronavirus immunity.

8.
Genome Res ; 32(5): 838-852, 2022 05.
Article in English | MEDLINE | ID: mdl-35277432

ABSTRACT

Investigation of the molecular mechanisms of aging in the human heart is challenging because of confounding factors, such as diet and medications, as well as limited access to tissues from healthy aging individuals. The laboratory mouse provides an ideal model to study aging in healthy individuals in a controlled environment. However, previous mouse studies have examined only a narrow range of the genetic variation that shapes individual differences during aging. Here, we analyze transcriptome and proteome data from 185 genetically diverse male and female mice at ages 6, 12, and 18 mo to characterize molecular changes that occur in the aging heart. Transcripts and proteins reveal activation of pathways related to exocytosis and cellular transport with age, whereas processes involved in protein folding decrease with age. Additional changes are apparent only in the protein data including reduced fatty acid oxidation and increased autophagy. For proteins that form complexes, we see a decline in correlation between their component subunits with age, suggesting age-related loss of stoichiometry. The most affected complexes are themselves involved in protein homeostasis, which potentially contributes to a cycle of progressive breakdown in protein quality control with age. Our findings highlight the important role of post-transcriptional regulation in aging. In addition, we identify genetic loci that modulate age-related changes in protein homeostasis, suggesting that genetic variation can alter the molecular aging process.


Subject(s)
Aging , Proteostasis , Aging/genetics , Aging/metabolism , Animals , Autophagy/genetics , Female , Gene Expression Regulation , Male , Mice , Proteostasis/genetics , Transcriptome
9.
EMBO J ; 41(2): e109445, 2022 12 17.
Article in English | MEDLINE | ID: mdl-34931323

ABSTRACT

Genetically diverse pluripotent stem cells display varied, heritable responses to differentiation cues. Here, we harnessed these disparities through derivation of mouse embryonic stem cells from the BXD genetic reference panel, along with C57BL/6J (B6) and DBA/2J (D2) parental strains, to identify loci regulating cell state transitions. Upon transition to formative pluripotency, B6 stem cells quickly dissolved naïve networks adopting gene expression modules indicative of neuroectoderm lineages, whereas D2 retained aspects of naïve pluripotency. Spontaneous formation of embryoid bodies identified divergent differentiation where B6 showed a propensity toward neuroectoderm and D2 toward definitive endoderm. Genetic mapping identified major trans-acting loci co-regulating chromatin accessibility and gene expression in both naïve and formative pluripotency. These loci distally modulated occupancy of pluripotency factors at hundreds of regulatory elements. One trans-acting locus on Chr 12 primarily impacted chromatin accessibility in embryonic stem cells, while in epiblast-like cells, the same locus subsequently influenced expression of genes enriched for neurogenesis, suggesting early chromatin priming. These results demonstrate genetically determined biases in lineage commitment and identify major regulators of the pluripotency epigenome.


Subject(s)
Cell Differentiation , Epigenome , Mouse Embryonic Stem Cells/metabolism , Animals , Cell Lineage , Chromatin Assembly and Disassembly , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Mice , Mice, Inbred DBA , Mouse Embryonic Stem Cells/cytology , Regulatory Sequences, Nucleic Acid
10.
Cell Genom ; 1(1)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-36212994

ABSTRACT

Genetically diverse mouse populations are powerful tools for characterizing the regulation of the proteome and its relationship to whole-organism phenotypes. We used mass spectrometry to profile and quantify the abundance of 6,798 proteins in liver tissue from mice of both sexes across 58 Collaborative Cross (CC) inbred strains. We previously collected liver proteomics data from the related Diversity Outbred (DO) mice and their founder strains. We show concordance across the proteomics datasets despite being generated from separate experiments, allowing comparative analysis. We map protein abundance quantitative trait loci (pQTLs), identifying 1,087 local and 285 distal in the CC mice and 1,706 local and 414 distal in the DO mice. We find that regulatory effects on individual proteins are conserved across the mouse populations, in particular for local genetic variation and sex differences. In comparison, proteins that form complexes are often co-regulated, displaying varying genetic architectures, and overall show lower heritability and map fewer pQTLs. We have made this resource publicly available to enable quantitative analyses of the regulation of the proteome.

11.
PLoS Genet ; 16(9): e1008916, 2020 09.
Article in English | MEDLINE | ID: mdl-32877400

ABSTRACT

Some imprinted genes exhibit parental origin specific expression bias rather than being transcribed exclusively from one copy. The physiological relevance of this remains poorly understood. In an analysis of brain-specific allele-biased expression, we identified that Trappc9, a cellular trafficking factor, was expressed predominantly (~70%) from the maternally inherited allele. Loss-of-function mutations in human TRAPPC9 cause a rare neurodevelopmental syndrome characterized by microcephaly and obesity. By studying Trappc9 null mice we discovered that homozygous mutant mice showed a reduction in brain size, exploratory activity and social memory, as well as a marked increase in body weight. A role for Trappc9 in energy balance was further supported by increased ad libitum food intake in a child with TRAPPC9 deficiency. Strikingly, heterozygous mice lacking the maternal allele (70% reduced expression) had pathology similar to homozygous mutants, whereas mice lacking the paternal allele (30% reduction) were phenotypically normal. Taken together, we conclude that Trappc9 deficient mice recapitulate key pathological features of TRAPPC9 mutations in humans and identify a role for Trappc9 and its imprinting in controlling brain development and metabolism.


Subject(s)
Intercellular Signaling Peptides and Proteins/deficiency , Microcephaly/genetics , Obesity/genetics , Animals , Child , Female , Gene Expression Regulation , Gene Frequency , Genomic Imprinting , Heterozygote , Homozygote , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Male , Maternal Inheritance , Mice , Mice, Inbred C57BL , Mice, Knockout , Microcephaly/metabolism , Mutation , Obesity/metabolism , Phenotype
12.
Cell Stem Cell ; 27(3): 470-481.e6, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32795399

ABSTRACT

Variability among pluripotent stem cell (PSC) lines is a prevailing issue that hampers not only experimental reproducibility but also large-scale applications and personalized cell-based therapy. This variability could result from epigenetic and genetic factors that influence stem cell behavior. Naive culture conditions minimize epigenetic fluctuation, potentially overcoming differences in PSC line differentiation potential. Here we derived PSCs from distinct mouse strains under naive conditions and show that lines from distinct genetic backgrounds have divergent differentiation capacity, confirming a major role for genetics in PSC phenotypic variability. This is explained in part through inconsistent activity of extra-cellular signaling, including the Wnt pathway, which is modulated by specific genetic variants. Overall, this study shows that genetic background plays a dominant role in driving phenotypic variability of PSCs.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Animals , Biological Variation, Population , Cell Differentiation/genetics , Genetic Variation , Mice , Reproducibility of Results
13.
Cell Stem Cell ; 27(3): 459-469.e8, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32795400

ABSTRACT

Mouse embryonic stem cells (mESCs) cultured in the presence of LIF occupy a ground state with highly active pluripotency-associated transcriptional and epigenetic circuitry. However, ground state pluripotency in some inbred strain backgrounds is unstable in the absence of ERK1/2 and GSK3 inhibition. Using an unbiased genetic approach, we dissect the basis of this divergent response to extracellular cues by profiling gene expression and chromatin accessibility in 170 genetically heterogeneous mESCs. We map thousands of loci affecting chromatin accessibility and/or transcript abundance, including 10 QTL hotspots where genetic variation at a single locus coordinates the regulation of genes throughout the genome. For one hotspot, we identify a single enhancer variant ∼10 kb upstream of Lifr associated with chromatin accessibility and mediating a cascade of molecular events affecting pluripotency. We validate causation through reciprocal allele swaps, demonstrating the functional consequences of noncoding variation in gene regulatory networks that stabilize pluripotent states in vitro.


Subject(s)
Chromatin , Pluripotent Stem Cells , Animals , Cell Differentiation , Chromatin/genetics , Gene Expression , Genetic Variation , Glycogen Synthase Kinase 3 , Mice
14.
PLoS One ; 15(6): e0233377, 2020.
Article in English | MEDLINE | ID: mdl-32502155

ABSTRACT

The biology of how faces are built and come to differ from one another is complex. Discovering normal variants that contribute to differences in facial morphology is one key to untangling this complexity, with important implications for medicine and evolutionary biology. This study maps quantitative trait loci (QTL) for skeletal facial shape using Diversity Outbred (DO) mice. The DO is a randomly outcrossed population with high heterozygosity that captures the allelic diversity of eight inbred mouse lines from three subspecies. The study uses a sample of 1147 DO animals (the largest sample yet employed for a shape QTL study in mouse), each characterized by 22 three-dimensional landmarks, 56,885 autosomal and X-chromosome markers, and sex and age classifiers. We identified 37 facial shape QTL across 20 shape principal components (PCs) using a mixed effects regression that accounts for kinship among observations. The QTL include some previously identified intervals as well as new regions that expand the list of potential targets for future experimental study. Three QTL characterized shape associations with size (allometry). Median support interval size was 3.5 Mb. Narrowing additional analysis to QTL for the five largest magnitude shape PCs, we found significant overrepresentation of genes with known roles in growth, skeletal and facial development, and sensory organ development. For most intervals, one or more of these genes lies within 0.25 Mb of the QTL's peak. QTL effect sizes were small, with none explaining more than 0.5% of facial shape variation. Thus, our results are consistent with a model of facial diversity that is influenced by key genes in skeletal and facial development and, simultaneously, is highly polygenic.


Subject(s)
Bone Development/genetics , Facial Bones/anatomy & histology , Maxillofacial Development/genetics , Alleles , Animals , Bone and Bones/anatomy & histology , Chromosome Mapping/methods , Collaborative Cross Mice/genetics , Face/anatomy & histology , Female , Genetic Variation/genetics , Genotype , Male , Mice , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
17.
Bioinformatics ; 34(13): 2177-2184, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29444201

ABSTRACT

Motivation: Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome, read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads aligning equally well to multiple genomic locations, isoforms or alleles can comprise the majority (>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods have been developed that use weighted allocation of read counts but these methods treat the different types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have implemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to estimate total gene expression, isoform usage and ASE based on this hierarchical allocation. Results: Methods that align RNA-seq reads to a diploid transcriptome incorporating known genetic variants improve estimates of ASE and total gene expression compared to methods that use reference genome alignments. Weighted allocation methods outperform methods that discard multi-reads. Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects. Availability and implementation: EMASE software is available at https://github.com/churchill-lab/emase. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Alleles , Alternative Splicing , Sequence Analysis, RNA/methods , Software , Transcriptome , Animals , Genomics/methods , Male , Mice
18.
Genetics ; 206(2): 621-639, 2017 06.
Article in English | MEDLINE | ID: mdl-28592500

ABSTRACT

Genetic studies of multidimensional phenotypes can potentially link genetic variation, gene expression, and physiological data to create multi-scale models of complex traits. The challenge of reducing these data to specific hypotheses has become increasingly acute with the advent of genome-scale data resources. Multi-parent populations derived from model organisms provide a resource for developing methods to understand this complexity. In this study, we simultaneously modeled body composition, serum biomarkers, and liver transcript abundances from 474 Diversity Outbred mice. This population contained both sexes and two dietary cohorts. Transcript data were reduced to functional gene modules with weighted gene coexpression network analysis (WGCNA), which were used as summary phenotypes representing enriched biological processes. These module phenotypes were jointly analyzed with body composition and serum biomarkers in a combined analysis of pleiotropy and epistasis (CAPE), which inferred networks of epistatic interactions between quantitative trait loci that affect one or more traits. This network frequently mapped interactions between alleles of different ancestries, providing evidence of both genetic synergy and redundancy between haplotypes. Furthermore, a number of loci interacted with sex and diet to yield sex-specific genetic effects and alleles that potentially protect individuals from the effects of a high-fat diet. Although the epistatic interactions explained small amounts of trait variance, the combination of directional interactions, allelic specificity, and high genomic resolution provided context to generate hypotheses for the roles of specific genes in complex traits. Our approach moves beyond the cataloging of single loci to infer genetic networks that map genetic etiology by simultaneously modeling all phenotypes.


Subject(s)
Epistasis, Genetic , Genetic Variation , Genomics , Metabolic Diseases/genetics , Animals , Gene Expression Regulation , Gene Regulatory Networks/genetics , Genetic Pleiotropy/genetics , Genotype , Haplotypes , Humans , Metabolic Diseases/pathology , Mice , Models, Genetic , Phenotype , Quantitative Trait Loci/genetics
19.
Nat Med ; 22(7): 771-9, 2016 07.
Article in English | MEDLINE | ID: mdl-27270587

ABSTRACT

The discovery of genetic mechanisms for resistance to obesity and diabetes may illuminate new therapeutic strategies for the treatment of this global health challenge. We used the polygenic 'lean' mouse model, which has been selected for low adiposity over 60 generations, to identify mitochondrial thiosulfate sulfurtransferase (Tst; also known as rhodanese) as a candidate obesity-resistance gene with selectively increased expression in adipocytes. Elevated adipose Tst expression correlated with indices of metabolic health across diverse mouse strains. Transgenic overexpression of Tst in adipocytes protected mice from diet-induced obesity and insulin-resistant diabetes. Tst-deficient mice showed markedly exacerbated diabetes, whereas pharmacological activation of TST ameliorated diabetes in mice. Mechanistically, TST selectively augmented mitochondrial function combined with degradation of reactive oxygen species and sulfide. In humans, TST mRNA expression in adipose tissue correlated positively with insulin sensitivity in adipose tissue and negatively with fat mass. Thus, the genetic identification of Tst as a beneficial regulator of adipocyte mitochondrial function may have therapeutic significance for individuals with type 2 diabetes.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 2/genetics , Insulin Resistance/genetics , Mitochondria/metabolism , Obesity/genetics , Thiosulfate Sulfurtransferase/genetics , Animals , Cell Differentiation , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Gene Knock-In Techniques , Glucose Clamp Technique , Glucose Tolerance Test , Humans , Mice , Mice, Inbred Strains , Mice, Transgenic , Models, Animal , Molecular Targeted Therapy , Obesity/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Thiosulfate Sulfurtransferase/metabolism
20.
Nature ; 534(7608): 500-5, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27309819

ABSTRACT

Genetic variation modulates protein expression through both transcriptional and post-transcriptional mechanisms. To characterize the consequences of natural genetic diversity on the proteome, here we combine a multiplexed, mass spectrometry-based method for protein quantification with an emerging outbred mouse model containing extensive genetic variation from eight inbred founder strains. By measuring genome-wide transcript and protein expression in livers from 192 Diversity outbred mice, we identify 2,866 protein quantitative trait loci (pQTL) with twice as many local as distant genetic variants. These data support distinct transcriptional and post-transcriptional models underlying the observed pQTL effects. Using a sensitive approach to mediation analysis, we often identified a second protein or transcript as the causal mediator of distant pQTL. Our analysis reveals an extensive network of direct protein-protein interactions. Finally, we show that local genotype can provide accurate predictions of protein abundance in an independent cohort of collaborative cross mice.


Subject(s)
Genetic Variation/genetics , Liver/metabolism , Proteome/analysis , Proteome/genetics , Proteomics , Animals , Female , Genome/genetics , Genotype , Male , Mass Spectrometry , Mice , Models, Genetic , Protein Interaction Maps , Proteome/biosynthesis , Quantitative Trait Loci/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...