Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 298(1): 101455, 2022 01.
Article in English | MEDLINE | ID: mdl-34861241

ABSTRACT

The extracellular domain of the nicotinic acetylcholine receptor isoforms formed by three α4 and two ß2 subunits ((α4)3(ß2)2 nAChR) harbors two high-affinity "canonical" acetylcholine (ACh)-binding sites located in the two α4:ß2 intersubunit interfaces and a low-affinity "noncanonical" ACh-binding site located in the α4:α4 intersubunit interface. In this study, we used ACh, cytisine, and nicotine (which bind at both the α4:α4 and α4:ß2 interfaces), TC-2559 (which binds at the α4:ß2 but not at the α4:α4 interface), and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI, which binds at the α4:α4 but not at the α4:ß2 interface), to investigate the binding and gating properties of CMPI at the α4:α4 interface. We recorded whole-cell currents from Xenopus laevis oocytes expressing (α4)3(ß2)2 nAChR in response to applications of these ligands, alone or in combination. The electrophysiological data were analyzed in the framework of a modified Monod-Wyman-Changeux allosteric activation model. We show that CMPI is a high-affinity, high-efficacy agonist at the α4:α4 binding site and that its weak direct activating effect is accounted for by its inability to productively interact with the α4:ß2 sites. The data presented here enhance our understanding of the functional contributions of ligand binding at the α4:α4 subunit interface to (α4)3(ß2)2 nAChR-channel gating. These findings support the potential use of α4:α4 specific ligands to increase the efficacy of the neurotransmitter ACh in conditions associated with decline in nAChRs activity in the brain.


Subject(s)
Nicotinic Agonists , Receptors, Nicotinic , Allosteric Site , Animals , Benzamides/chemistry , Benzamides/pharmacology , Binding Sites , Ligands , Nicotinic Agonists/chemistry , Nicotinic Agonists/pharmacology , Oocytes/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Xenopus laevis
2.
Molecules ; 25(12)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630476

ABSTRACT

Neuronal nicotinic acetylcholine receptor (nAChR)-based therapeutics are sought as a potential alternative strategy to opioids for pain management. In this study, we examine the antinociceptive effects of 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrazol-4-yl)isoxazole (CMPI), a novel positive allosteric modulator (PAM), with preferential selectivity to the low agonist sensitivity (α4)3(ß2)2 nAChR and desformylflustrabromine (dFBr), a PAM for α4-containing nAChRs. We used hot plate and tail flick tests to measure the effect of dFBr and CMPI on the latency to acute thermal nociceptive responses in rats. Intraperitoneal injection of dFBr, but not CMPI, dose-dependently increased latency in the hot plate test. In the tail flick test, the effect achieved at the highest dFBr or CMPI dose tested was only <20% of the maximum possible effects reported for nicotine and other nicotinic agonists. Moreover, the coadministration of dFBr did not enhance the antinociceptive effect of a low dose of nicotine. Our results show that the direct acute effect of dFBr is superior to that for CMPI, indicating that selectivity to (α4)3(ß2)2 nAChR is not advantageous in alleviating responses to acute thermal nociceptive stimulus. However, further studies are necessary to test the suitability of (α4)3(ß2)2 nAChR-selective PAMs in chronic pain models.


Subject(s)
Hot Temperature , Hydrocarbons, Brominated/chemistry , Nicotinic Agonists/pharmacology , Nociception/drug effects , Pain Threshold/drug effects , Receptors, Nicotinic/metabolism , Allosteric Regulation , Animals , Isoxazoles/chemistry , Male , Pyrazoles/chemistry , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...