Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Biotechnol (NY) ; 26(1): 149-168, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38240954

ABSTRACT

There is clear evidence that the oceans are warming due to anthropogenic climate change, and the northeastern coast of USA contains some of the fastest warming areas. This warming is projected to continue with serious biological and social ramifications for fisheries and aquaculture. One species particularly vulnerable to warming is the Atlantic surfclam (Spisula solidissima). The surfclam is a critically important species, linking marine food webs and supporting a productive, lucrative, and sustainable fishery. The surfclam is also emerging as an attractive candidate for aquaculture diversification, but the warming of shallow coastal farms threatens the expansion of surfclam aquaculture. Little is known about the adaptive potential of surfclams to cope with ocean warming. In this study, the surfclam transcriptome under heat stress was examined. Two groups of surfclams were subjected to heat stress to assess how artificial selection may alter gene expression. One group of clams had been selected for greater heat tolerance (HS) and the other was composed of random control clams (RC). After a 6-h exposure to 16 or 29 °C, gill transcriptome expression profiles of the four temperature/group combinations were determined by RNA sequencing and compared. When surfclams experienced heat stress, they exhibited upregulation of heat shock proteins (HSPs), inhibitors of apoptosis (IAPs), and other stress-response related genes. RC clams differentially expressed 1.7 times more genes than HS clams, yet HS clams had a stronger response of key stress response genes, including HSPs, IAPs, and genes involved with mitigating oxidative stress. The findings imply that the HS clams have a more effective response to heat stress after undergoing the initial selection event due to genetic differences created by the selection, epigenetic memory of the first heat shock, or both. This work provides insights into how surfclams adapt to heat stress and should inform future breeding programs that attempt to breed surfclam for greater heat tolerance, and ultimately bring greater resiliency to shellfish farms.


Subject(s)
Bivalvia , Spisula , Animals , Transcriptome , Heat-Shock Response/genetics , Gene Expression Profiling
2.
Biol Bull ; 244(2): 94-102, 2023 04.
Article in English | MEDLINE | ID: mdl-37725700

ABSTRACT

AbstractEastern oysters (Crassostrea virginica) are sessile, relying on a larval phase to disperse in estuaries. Oyster larval swimming behavior can alter dispersal trajectories and patterns of population connectivity. Experiments were conducted to test how both (1) acclimation time to new environmental conditions and (2) larval swimming behavior change with salinity and larval age. Acclimation time to changes in salinity was longest in lower salinity (6 ppt) and decreased with age. To test changes in behavior with salinity, larvae were placed into four salinities (6, 10, 16, and 22 ppt) where swimming was recorded. To test changes in behavior with age, larvae aged 6, 12, and 15 days were recorded. In both experiments, swimming paths were mapped in two dimensions, behavior of each path was categorized, and speed, direction, and acceleration were calculated. The frequency of upward, neutral, and downward swimming behaviors did not differ across salinity treatments but did vary with age, whereas the frequency of behavior types varied with both salinity and ontogeny. As an example, diving was observed more frequently in low salinity, and more downward helices were observed in moderate salinity, while younger larvae swam upward with more frequency than older larvae. Surprisingly, diving was observed in 10%-15% of all larvae across all ages. Given the consequence of larval behavior to marine invertebrate dispersal, changes in swimming over larval age and in response to environmental changes have important implications to marine population stability and structure.


Subject(s)
Ostreidae , Swimming , Animals , Salinity , Acclimatization , Larva
3.
Mar Environ Res ; 177: 105602, 2022 May.
Article in English | MEDLINE | ID: mdl-35462229

ABSTRACT

A dynamic energy budget (DEB) model integrating pCO2 was used to describe ocean acidification (OA) effects on Atlantic surfclam, Spisula solidissima, bioenergetics. Effects of elevated pCO2 on ingestion and somatic maintenance costs were simulated, validated, and adapted in the DEB model based upon growth and biological rates acquired during a 12-week laboratory experiment. Temperature and pCO2 were projected for the next 100 years following the intergovernmental panel on climate change representative concentration pathways scenarios (2.6, 6.0, and 8.5) and used as forcing variables to project surfclam growth and reproduction. End-of-century water warming and acidification conditions resulted in simulated faster growth for young surfclams and more energy allocated to reproduction until the beginning of the 22nd century when a reduction in maximum shell length and energy allocated to reproduction was observed for the RCP 8.5 scenario.


Subject(s)
Spisula , Animals , Climate Change , Hydrogen-Ion Concentration , Oceans and Seas , Seawater , Temperature
4.
Mar Pollut Bull ; 161(Pt B): 111740, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33128982

ABSTRACT

In this study, we assessed the Atlantic surfclam (Spisula solidissima) energy budget under different ocean acidification conditions (OA). During 12 weeks, 126 individuals were maintained at three different ρCO2 concentrations. Every two weeks, individuals were sampled for physiological measurements and scope for growth (SFG). In the high ρCO2 treatment, clearance rate decreased and excretion rate increased relative to the low ρCO2 treatment, resulting in reduced SFG. Moreover, oxygen:nitrogen (O:N) excretion ratio dropped, suggesting that a switch in metabolic strategy occurred. The medium ρCO2 treatment had no significant effects upon SFG; however, metabolic loss increased, suggesting a rise in energy expenditure. In addition, a significant increase in food selection efficiency was observed in the medium treatment, which could be a compensatory reaction to the metabolic over-costs. Results showed that surfclams are particularly sensitive to OA; however, the different compensatory mechanisms observed indicate that they are capable of some temporary resilience.


Subject(s)
Spisula , Animals , Homeostasis , Humans , Hydrogen-Ion Concentration , Oceans and Seas , Seawater
5.
Dis Aquat Organ ; 130(1): 25-36, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30154269

ABSTRACT

The eastern oyster Crassostrea virginica provides a number of ecosystem services and is an important commercial fishery species along the US East and Gulf Coasts. Oyster populations have declined dramatically due to overharvesting, habitat loss, and disease. As restoration efforts and aquaculture of oysters continue to increase throughout their range, it is important to consider the impacts of a number of potential oyster pests, including the boring sponge Cliona spp. and the pea crab Zaops (Pinnotheres) ostreum, on oyster populations. Both of these have been demonstrated to reduce oyster growth, condition, and in some instances, reproductive output. Boring sponges in particular are a major concern for oyster growers and managers. Our monitoring efforts have suggested that pea crabs might be more prevalent in sponge-infested oysters; we therefore conducted an observational study to determine if there was any relationship between pea crab prevalence and sponge presence, and to examine whether the presence of both pests had synergistic effects on oyster condition. At 2 very different sample sites, North Carolina and New Jersey, oysters with 1 pest (i.e. boring sponge) were significantly more likely to have the second pest (i.e. pea crab) than the background population. Furthermore, sponge presence negatively affected oyster condition in North Carolina only, while pea crabs significantly reduced condition at both locations. When sponges and pea crabs were present together, the effects on oyster condition were additive. This study provides further evidence that interactions between an individual and a fouling/pest organism can alter oyster susceptibility to other parasites.


Subject(s)
Brachyura/physiology , Ostreidae/physiology , Porifera/physiology , Animals , North Carolina , Time Factors
6.
Biol Bull ; 235(3): 123-133, 2018 12.
Article in English | MEDLINE | ID: mdl-30624119

ABSTRACT

External morphology has been shown to influence predation and locomotion of decapod larvae and is, therefore, directly related to their ability to survive and disperse. The first goal of this study was to characterize first-stage blue crab zoeal morphology and its variability across larval broods to test whether inter-brood differences in morphology exist. The second was to identify possible correlations between maternal characteristics and zoeal morphology. The offspring of 21 individuals were hatched in the laboratory, photographed, and measured. Zoeae exhibited substantial variability, with all metrics showing significant inter-brood differences. The greatest variability was seen in the zoeal abdomen, rostrum, and dorsal spine length. A principal component analysis showed no distinct clustering of broods, with variation generally driven by larger zoeae. Using observed morphology, models of drag induced by swimming and sinking also showed significant inter-brood differences, with a maximum twofold difference across broods. In contrast to trends in other decapod taxa, maternal characteristics (female carapace width and mass and egg sponge volume and mass) are not significant predictors of zoeal morphology. These results suggest that brood effects are present across a wide range of morphological characteristics and that future experiments involving Callinectes sapidus morphology or its functionality should explicitly account for inter-brood variation. Additionally, inter-brood morphological differences may result in differential predation mortality and locomotory abilities among broods.


Subject(s)
Brachyura/anatomy & histology , Animals , Biological Variation, Population , Female , Larva/anatomy & histology , Models, Biological , Swimming
7.
Mar Pollut Bull ; 100(1): 47-52, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26433775

ABSTRACT

Shellfish aquaculture is a widely practiced way of producing food for human consumption in coastal areas. When farming intertidal clams, farmers commonly protect young seedling clams from predatory losses by covering farmed plots with netting or screening. Recent discussion of the effectiveness of protective nets or screens and their environmental effects has raised questions concerning the utility of the practice. We provide data based on a review of more than 35 peer-reviewed articles, as well as our own research that demonstrates the efficacy of predator protection for clam farms in various habitats around the world. In addition, we evaluate the effects of screening on temperature, and comment on ancient practices of clam gardening as conducted in the Pacific Northwest.


Subject(s)
Aquaculture/methods , Bivalvia/physiology , Animals , Conservation of Natural Resources , Ecosystem , Humans , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...