Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Haematologica ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721737

ABSTRACT

Hyperleukocytosis (HL) in pediatric acute myeloid leukemia (AML) is associated with severe complications and inferior outcome. We report results on HL patients included in the NOPHO-DBH AML 2012 study. We recommended immediate start of full dose chemotherapy (etoposide [ETO] monotherapy for 5 days as part of the first course), avoiding leukapheresis (LA) and prephase chemotherapy (PCT). Of 714 included patients, 122 (17.1%) had HL, and 111 were treated according to the recommendations with ETO upfront without preceding LA or PCT. The first dose was applied the same day as the AML diagnosis or the day after in 94%. ETO was administered via peripheral veins in 37% of patients without major complications. After initiation of ETO the remaining WBC on days 2-5 was 69%, 36%, 17% and 8% of the pre-treatment level. On day 3, 81% had a WBC.

2.
Commun Biol ; 7(1): 66, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195839

ABSTRACT

Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.


Subject(s)
Birth Order , DNA Methylation , Child , Female , Humans , Infant, Newborn , Pregnancy , Epigenesis, Genetic , Epigenomics
4.
Leukemia ; 37(3): 550-559, 2023 03.
Article in English | MEDLINE | ID: mdl-36572751

ABSTRACT

Despite improvement of current treatment strategies and novel targeted drugs, relapse and treatment resistance largely determine the outcome for acute myeloid leukemia (AML) patients. To identify the underlying molecular characteristics, numerous studies have been aimed to decipher the genomic- and transcriptomic landscape of AML. Nevertheless, further molecular changes allowing malignant cells to escape treatment remain to be elucidated. Mass spectrometry is a powerful tool enabling detailed insights into proteomic changes that could explain AML relapse and resistance. Here, we investigated AML samples from 47 adult and 22 pediatric patients at serial time-points during disease progression using mass spectrometry-based in-depth proteomics. We show that the proteomic profile at relapse is enriched for mitochondrial ribosomal proteins and subunits of the respiratory chain complex, indicative of reprogrammed energy metabolism from diagnosis to relapse. Further, higher levels of granzymes and lower levels of the anti-inflammatory protein CR1/CD35 suggest an inflammatory signature promoting disease progression. Finally, through a proteogenomic approach, we detected novel peptides, which present a promising repertoire in the search for biomarkers and tumor-specific druggable targets. Altogether, this study highlights the importance of proteomic studies in holistic approaches to improve treatment and survival of AML patients.


Subject(s)
Leukemia, Myeloid, Acute , Proteogenomics , Humans , Child , Adult , Proteomics/methods , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Recurrence , Disease Progression
5.
Expert Rev Anticancer Ther ; 22(11): 1183-1196, 2022 11.
Article in English | MEDLINE | ID: mdl-36191604

ABSTRACT

INTRODUCTION: Pediatric acute myeloid leukemia (AML) is the second most common type of pediatric leukemia. Patients with AML are at high risk for several complications such as infections, typhlitis, and acute and long-term cardiotoxicity. Despite this knowledge, there are no definite supportive care guidelines as to what the best approach is to manage or prevent these complications. AREA COVERED: The NOPHO-DB-SHIP (Nordic-Dutch-Belgian-Spain-Hong-Kong-Israel-Portugal) consortium, in preparation for a new trial in pediatric AML patients, had dedicated meetings for supportive care. In this review, the authors discuss the available data and outline recommendations for the management of children and adolescents with AML with an emphasis on hyperleukocytosis, tumor lysis syndrome, coagulation abnormalities and bleeding, infection, typhlitis, malnutrition, cardiotoxicity, and fertility preservation. EXPERT OPINION: Improved supportive care has significantly contributed to increased cure rates. Recommendations on supportive care are an essential part of treatment for this highly susceptible population and will further improve their outcome.


Subject(s)
Leukemia, Myeloid, Acute , Typhlitis , Adolescent , Child , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/pathology , Cardiotoxicity
7.
J Transl Med ; 20(1): 225, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35568909

ABSTRACT

BACKGROUND: Matching treatment based on tumour molecular characteristics has revolutionized the treatment of some cancers and has given hope to many patients. Although personalized cancer care is an old concept, renewed attention has arisen due to recent advancements in cancer diagnostics including access to high-throughput sequencing of tumour tissue. Targeted therapies interfering with cancer specific pathways have been developed and approved for subgroups of patients. These drugs might just as well be efficient in other diagnostic subgroups, not investigated in pharma-led clinical studies, but their potential use on new indications is never explored due to limited number of patients. METHODS: In this national, investigator-initiated, prospective, open-label, non-randomized combined basket- and umbrella-trial, patients are enrolled in multiple parallel cohorts. Each cohort is defined by the patient's tumour type, molecular profile of the tumour, and study drug. Treatment outcome in each cohort is monitored by using a Simon two-stage-like 'admissible' monitoring plan to identify evidence of clinical activity. All drugs available in IMPRESS-Norway have regulatory approval and are funded by pharmaceutical companies. Molecular diagnostics are funded by the public health care system. DISCUSSION: Precision oncology means to stratify treatment based on specific patient characteristics and the molecular profile of the tumor. Use of targeted drugs is currently restricted to specific biomarker-defined subgroups of patients according to their market authorization. However, other cancer patients might also benefit of treatment with these drugs if the same biomarker is present. The emerging technologies in molecular diagnostics are now being implemented in Norway and it is publicly reimbursed, thus more cancer patients will have a more comprehensive genomic profiling of their tumour. Patients with actionable genomic alterations in their tumour may have the possibility to try precision cancer drugs through IMPRESS-Norway, if standard treatment is no longer an option, and the drugs are available in the study. This might benefit some patients. In addition, it is a good example of a public-private collaboration to establish a national infrastructure for precision oncology. Trial registrations EudraCT: 2020-004414-35, registered 02/19/2021; ClinicalTrial.gov: NCT04817956, registered 03/26/2021.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/therapeutic use , Humans , Medical Oncology , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Prospective Studies
8.
Blood Adv ; 6(1): 152-164, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34619772

ABSTRACT

Numerous studies have been performed over the last decade to exploit the complexity of genomic and transcriptomic lesions driving the initiation of acute myeloid leukemia (AML). These studies have helped improve risk classification and treatment options. Detailed molecular characterization of longitudinal AML samples is sparse, however; meanwhile, relapse and therapy resistance represent the main challenges in AML care. To this end, we performed transcriptome-wide RNA sequencing of longitudinal diagnosis, relapse, and/or primary resistant samples from 47 adult and 23 pediatric AML patients with known mutational background. Gene expression analysis revealed the association of short event-free survival with overexpression of GLI2 and IL1R1, as well as downregulation of ST18. Moreover, CR1 downregulation and DPEP1 upregulation were associated with AML relapse both in adults and children. Finally, machine learning-based and network-based analysis identified overexpressed CD6 and downregulated INSR as highly copredictive genes depicting important relapse-associated characteristics among adult patients with AML. Our findings highlight the importance of a tumor-promoting inflammatory environment in leukemia progression, as indicated by several of the herein identified differentially expressed genes. Together, this knowledge provides the foundation for novel personalized drug targets and has the potential to maximize the benefit of current treatments to improve cure rates in AML.


Subject(s)
Leukemia, Myeloid, Acute , Transcriptome , Adult , Child , Gene Expression Profiling , Genomics , Humans , Leukemia, Myeloid, Acute/drug therapy , Mutation
9.
Cancer Rep (Hoboken) ; 5(8): e1555, 2022 08.
Article in English | MEDLINE | ID: mdl-34541832

ABSTRACT

BACKGROUND: The rapidly expanding era of "omics" research is highly dependent on the availability of quality-proven biological material, especially for rare conditions such as pediatric malignancies. Professional biobanks provide such material, focusing on standardized collection and handling procedures, distinctive quality measurements, traceability of storage conditions, and accessibility. For pediatric malignancies, traditional tumor biobanking is challenging due to the rareness and limited amount of tissue and blood samples. The higher molecular heterogeneity, lower mutation rates, and unique genomic landscapes, however, renders biobanking of this tissue even more crucial. AIM: The aim of this study was to test and establish methods for a prospective and centralized biobank for infants, children, and adolescents up to 18 years of age diagnosed with cancer in Norway. METHODS: Obtain judicial and ethical approvals and administration through a consortium, steering committee, and advisory board. Develop pipelines including SOPs for all aspects in the biobank process, including collection, processing and storing of samples and data, as well of quality controlling, safeguarding, distributing, and transport. RESULTS: The childhood cancer biobanking started at Oslo University Hospital in March 2017 and was from 2019 run as a national Norwegian Childhood Cancer Biobank. Informed consent and biological samples are collected regionally and stored centrally. Approximately 12 000 samples from 510 patients and have been included by January 1, 2021, representing a 96% consent and participation rate among our newly diagnosed patients. CONCLUSION: A well-functioning nationwide collection and centralized biobank with standardized procedures and national storage for pediatric malignancies has been established with a high acceptance among families.


Subject(s)
Biological Specimen Banks , Neoplasms , Adolescent , Child , Genomics , Humans , Neoplasms/diagnosis , Neoplasms/epidemiology , Norway/epidemiology , Prospective Studies
11.
Cancer Genomics Proteomics ; 18(2): 121-131, 2021.
Article in English | MEDLINE | ID: mdl-33608309

ABSTRACT

BACKGROUND/AIM: Previous reports have associated the KMT2A-ELL fusion gene, generated by t(11;19)(q23;p13.1), with acute myeloid leukemia (AML). We herein report a KMT2A-ELL and a novel ZNF56-KMT2A fusion genes in a pediatric T-lineage acute lymphoblastic leukemia (T-ALL). MATERIALS AND METHODS: Genetic investigations were performed on bone marrow of a 13-year-old boy diagnosed with T-ALL. RESULTS: A KMT2A-ELL and a novel ZNF56-KMT2A fusion genes were generated on der(11)t(11;19)(q23;p13.1) and der(19)t(11;19)(q23;p13.1), respectively. Exon 20 of KMT2A fused to exon 2 of ELL in KMT2A-ELL chimeric transcript whereas exon 1 of ZNF56 fused to exon 21 of KMT2A in ZNF56-KMT2A transcript. A literature search revealed four more T-ALL patients carrying a KMT2A-ELL fusion. All of them were males aged 11, 11, 17, and 20 years. CONCLUSION: KMT2A-ELL fusion is a rare recurrent genetic event in T-ALL with uncertain prognostic implications. The frequency and impact of ZNF56-KMT2A in T-ALL are unknown.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Humans , Male
12.
Blood Adv ; 5(3): 900-912, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33560403

ABSTRACT

Relapse is the leading cause of death of adult and pediatric patients with acute myeloid leukemia (AML). Numerous studies have helped to elucidate the complex mutational landscape at diagnosis of AML, leading to improved risk stratification and new therapeutic options. However, multi-whole-genome studies of adult and pediatric AML at relapse are necessary for further advances. To this end, we performed whole-genome and whole-exome sequencing analyses of longitudinal diagnosis, relapse, and/or primary resistant specimens from 48 adult and 25 pediatric patients with AML. We identified mutations recurrently gained at relapse in ARID1A and CSF1R, both of which represent potentially actionable therapeutic alternatives. Further, we report specific differences in the mutational spectrum between adult vs pediatric relapsed AML, with MGA and H3F3A p.Lys28Met mutations recurrently found at relapse in adults, whereas internal tandem duplications in UBTF were identified solely in children. Finally, our study revealed recurrent mutations in IKZF1, KANSL1, and NIPBL at relapse. All of the mentioned genes have either never been reported at diagnosis in de novo AML or have been reported at low frequency, suggesting important roles for these alterations predominantly in disease progression and/or resistance to therapy. Our findings shed further light on the complexity of relapsed AML and identified previously unappreciated alterations that may lead to improved outcomes through personalized medicine.


Subject(s)
Leukemia, Myeloid, Acute , Cell Cycle Proteins , Child , Genomics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Precision Medicine , Recurrence
13.
Cancer Genomics Proteomics ; 18(1): 67-81, 2021.
Article in English | MEDLINE | ID: mdl-33419897

ABSTRACT

BACKGROUND/AIM: Fusion of histone-lysine N-methyltransferase 2A gene (KMT2A) with the Rho guanine nucleotide exchange factor 12 gene (ARHGEF12), both located in 11q23, was reported in some leukemic patients. We report a KMT2A-ARHGEF12 fusion occurring during treatment of a pediatric acute myeloid leukemia (AML) with topoisomerase II inhibitors leading to a secondary acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS: Multiple genetic analyses were performed on bone marrow cells of a girl initially diagnosed with AML. RESULTS: At the time of diagnosis with AML, the t(9;11)(p21;q23)/KMT2A-MLLT3 genetic abnormality was found. After chemotherapy resulting in AML clinical remission, a 2 Mb deletion in 11q23 was found generating a KMT2A-ARHGEF12 fusion gene. When the patient later developed B lineage ALL, a t(14;19)(q32;q13), loss of one chromosome 9, and KMT2A-ARHGEF12 were detected. CONCLUSION: The patient sequentially developed AML and ALL with three leukemia-specific genomic abnormalities in her bone marrow cells, two of which were KMT2A-rearrangements.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Child , Chromosomes, Human, Pair 11 , Female , Gene Deletion , Gene Fusion , Guanine Nucleotide Exchange Factors/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Myeloid-Lymphoid Leukemia Protein/genetics , Nuclear Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
14.
J Pediatr Hematol Oncol ; 43(4): e508-e511, 2021 05 01.
Article in English | MEDLINE | ID: mdl-32852395

ABSTRACT

Dysregulated tyrosine kinases in myeloid/lymphoid neoplasms with eosinophilia are rare, but do occur in children. To increase awareness of this diagnosis, we present a child who was diagnosed after a 3-year disease history. The patient was initially treated according to a T-cell lymphoblastic lymphoma protocol, but genetic analyses at recurrence revealed microdeletions resulting in an in-frame fusion of ZMYM2 and FLT3. Treatment with sorafenib, an FLT3 tyrosine kinase inhibitor, rapidly resulted in significant reduction of lymphadenopathy and normalization of white blood cell and eosinophil counts. At 17 months of treatment, he remains in complete hematologic, but not molecular remission.


Subject(s)
Antineoplastic Agents/therapeutic use , Lymphoma/drug therapy , Nuclear Proteins/genetics , Sorafenib/therapeutic use , fms-Like Tyrosine Kinase 3/genetics , Child, Preschool , Eosinophilia/complications , Humans , Lymphoma/complications , Lymphoma/genetics , Male , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/therapeutic use
15.
Epigenomics ; 11(13): 1487-1500, 2019 10.
Article in English | MEDLINE | ID: mdl-31536415

ABSTRACT

Aim: Cigarette smoking influences DNA methylation genome wide, in newborns from pregnancy exposure and in adults from personal smoking. Whether a unique methylation signature exists for in utero exposure in newborns is unknown. Materials & methods: We separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 15907 participants, 2433 current smokers). Results & conclusion: Comparing meta-analyses, we identified numerous signatures specific to newborns along with many shared between newborns and adults. Unique smoking-associated genes in newborns were enriched in xenobiotic metabolism pathways. Our findings may provide insights into specific health impacts of prenatal exposure on offspring.


Subject(s)
DNA Methylation , Epigenomics/methods , Prenatal Exposure Delayed Effects/genetics , Tobacco Smoking/genetics , Adult , Cohort Studies , CpG Islands , Epigenesis, Genetic , Female , Humans , Infant, Newborn , Maternal Exposure/adverse effects , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , Tobacco Smoking/epidemiology
16.
PLoS One ; 13(12): e0208699, 2018.
Article in English | MEDLINE | ID: mdl-30540848

ABSTRACT

Genome-wide DNA methylation studies are becoming increasingly important in unraveling the epigenetic basis of cell biology, aging and human conditions. The aim of the present study was to explore whether different methods for extracting DNA from whole blood can affect DNA methylation outcome, potentially confounding DNA methylation studies. DNA was isolated from healthy blood donors (n = 10) using three different extraction methods (i.e. two automatic extractions methods based on magnetic beads or isopropanol precipitation, and manual organic extraction). DNA methylation was analyzed using the Infinium HumanMethylation450 Bead Chip (Infinium 450K) (n = 30 samples in total), which is a frequently used method in genome-wide DNA methylation analyses. Overall, the different extraction methods did not have a significant impact on the global DNA methylation patterns. However, DNA methylation differences between organic extraction and each of the automated methods were in general larger than differences between the two automated extraction methods. No CpG sites or regions reached genome-wide significance when testing for differential methylation between extraction methods. Although this study is based on a small sample, these results suggest that extraction method is unlikely to confound Infinium 450K methylation analysis in whole blood.


Subject(s)
DNA Methylation , DNA/isolation & purification , DNA/metabolism , Genetic Techniques , Automation, Laboratory , Blood , CpG Islands , Female , Humans , Lab-On-A-Chip Devices , Male
18.
Clin Epigenetics ; 8: 110, 2016.
Article in English | MEDLINE | ID: mdl-27785156

ABSTRACT

BACKGROUND: Several studies have reported age-associated changes in DNA methylation in the first few years of life and in adult populations, but the extent of such changes during childhood is less well studied. The goals of this study were to investigate to what degree intra-individual changes in DNA methylation are associated with aging during childhood and dissect the methylation changes directly associated with aging from the effect mediated through variation in cell-type composition (CTC). RESULTS: We performed reduced representation bisulfite sequencing (RRBS) in peripheral whole-blood samples collected at 2, 10, and 16 years of age. We identified age-associated longitudinal changes in DNA methylation at 346 CpGs in 178 genes. Analyses separating the effect mediated by CTC variability across age identified 26 CpGs located in 12 genes that associated directly with age. Hence, the CTC changes across age appear to act as a mediator of the observed DNA methylation associated with age. The results were replicated using EpiTYPER in a second sample set selected from the same cohort. Gene ontology analyses revealed enrichment of transcriptional regulation and developmental processes. Further, comparisons of the mean DNA methylation differences between the time points reveal greater differences between 2 to 10 years and 10 to 16 years, suggesting that the identified age-associated DNA methylation patterns manifests in early childhood. CONCLUSIONS: This study reveals insights into the epigenetic dynamics associated with aging early in life. Such information could ultimately provide clues and point towards molecular pathways that are susceptible to aging-related disease-associated epigenetic dysregulation.


Subject(s)
Aging/genetics , CpG Islands , DNA Methylation , Sequence Analysis, DNA/methods , Adolescent , Child , Child, Preschool , Epigenesis, Genetic , Gene Ontology , Humans , Longitudinal Studies , Phenotype
19.
Am J Hum Genet ; 98(4): 680-96, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27040690

ABSTRACT

Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10(-16)). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Smoking/adverse effects , Asthma/etiology , Asthma/genetics , Child , Child, Preschool , Chromosome Mapping , Cleft Lip/etiology , Cleft Lip/genetics , Cleft Palate/etiology , Cleft Palate/genetics , Female , Genetic Association Studies , Humans , Infant , Infant, Newborn , Pregnancy , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...