Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
bioRxiv ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38712225

ABSTRACT

Cell density, the ratio of cell mass to volume, is an indicator of molecular crowding and therefore a fundamental determinant of cell state and function. However, existing density measurements lack the precision or throughput to quantify subtle differences in cell states, particularly in primary samples. Here we present an approach for measuring the density of 30,000 single cells per hour with a precision of 0.03% (0.0003 g/mL) by integrating fluorescence exclusion microscopy with a suspended microchannel resonator. Applying this approach to human lymphocytes, we discovered that cell density and its variation decrease as cells transition from quiescence to a proliferative state, suggesting that the level of molecular crowding decreases and becomes more regulated upon entry into the cell cycle. Using a pancreatic cancer patient-derived xenograft model, we found that the ex vivo density response of primary tumor cells to drug treatment can predict in vivo tumor growth response. Our method reveals unexpected behavior in molecular crowding during cell state transitions and suggests density as a new biomarker for functional precision medicine.

2.
Transplant Cell Ther ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38642840

ABSTRACT

Data on recent bone marrow harvest (BMH) collections from the NMDP has shown that bone marrow (BM) quality has decreased based on total nucleated cell count in the product. To ensure that quality BM products are available to all recipients, the NMDP Marrow Alliance was formed in April 2021 to increase the capability of BM collection centers to safely deliver high-quality products consistently and to identify and disseminate guidelines for performing BMH. This white paper describes the best practices for BMH as defined by the NMDP Marrow Alliance.

5.
Front Immunol ; 13: 1016179, 2022.
Article in English | MEDLINE | ID: mdl-36569945

ABSTRACT

The optimal use of many biotherapeutics is restricted by Anti-drug antibodies (ADAs) and hypersensitivity responses which can affect potency and ability to administer a treatment. Here we demonstrate that Re-surfacing can be utilized as a generalizable approach to engineer proteins with extensive surface residue modifications in order to avoid binding by pre-existing ADAs. This technique was applied to E. coli Asparaginase (ASN) to produce functional mutants with up to 58 substitutions resulting in direct modification of 35% of surface residues. Re-surfaced ASNs exhibited significantly reduced binding to murine, rabbit and human polyclonal ADAs, with a negative correlation observed between binding and mutational distance from the native protein. Reductions in ADA binding correlated with diminished hypersensitivity responses in an in vivo mouse model. By using computational design approaches to traverse extended distances in mutational space while maintaining function, protein Re-surfacing may provide a means to generate novel or second line therapies for life-saving drugs with limited therapeutic alternatives.


Subject(s)
Asparaginase , Escherichia coli , Humans , Animals , Mice , Rabbits , Asparaginase/genetics , Asparaginase/therapeutic use , Escherichia coli/genetics , Antibodies , Membrane Proteins
6.
Nat Med ; 27(11): 1921-1927, 2021 11.
Article in English | MEDLINE | ID: mdl-34663986

ABSTRACT

Clonal hematopoiesis (CH) results from somatic genomic alterations that drive clonal expansion of blood cells. Somatic gene mutations associated with hematologic malignancies detected in hematopoietic cells of healthy individuals, referred to as CH of indeterminate potential (CHIP), have been associated with myeloid malignancies, while mosaic chromosomal alterations (mCAs) have been associated with lymphoid malignancies. Here, we analyzed CHIP in 55,383 individuals and autosomal mCAs in 420,969 individuals with no history of hematologic malignancies in the UK Biobank and Mass General Brigham Biobank. We distinguished myeloid and lymphoid somatic gene mutations, as well as myeloid and lymphoid mCAs, and found both to be associated with risk of lineage-specific hematologic malignancies. Further, we performed an integrated analysis of somatic alterations with peripheral blood count parameters to stratify the risk of incident myeloid and lymphoid malignancies. These genetic alterations can be readily detected in clinical sequencing panels and used with blood count parameters to identify individuals at high risk of developing hematologic malignancies.


Subject(s)
Clonal Hematopoiesis/genetics , Clonal Hematopoiesis/physiology , Hematologic Neoplasms/pathology , Hematopoietic Stem Cells/cytology , Blood Cell Count , Chromosome Aberrations , Hematologic Neoplasms/genetics , Humans
7.
Nature ; 583(7818): 845-851, 2020 07.
Article in English | MEDLINE | ID: mdl-32699415

ABSTRACT

Malignant transformation of cells typically involves several genetic lesions, whose combined activity gives rise to cancer1. Here we analyse 1,148 patient-derived B-cell leukaemia (B-ALL) samples, and find that individual mutations do not promote leukaemogenesis unless they converge on one single oncogenic pathway that is characteristic of the differentiation stage of transformed B cells. Mutations that are not aligned with this central oncogenic driver activate divergent pathways and subvert transformation. Oncogenic lesions in B-ALL frequently mimic signalling through cytokine receptors at the pro-B-cell stage (via activation of the signal-transduction protein STAT5)2-4 or pre-B-cell receptors in more mature cells (via activation of the protein kinase ERK)5-8. STAT5- and ERK-activating lesions are found frequently, but occur together in only around 3% of cases (P = 2.2 × 10-16). Single-cell mutation and phospho-protein analyses reveal the segregation of oncogenic STAT5 and ERK activation to competing clones. STAT5 and ERK engage opposing biochemical and transcriptional programs that are orchestrated by the transcription factors MYC and BCL6, respectively. Genetic reactivation of the divergent (suppressed) pathway comes at the expense of the principal oncogenic driver and reverses transformation. Conversely, deletion of divergent pathway components accelerates leukaemogenesis. Thus, persistence of divergent signalling pathways represents a powerful barrier to transformation, while convergence on one principal driver defines a central event in leukaemia initiation. Pharmacological reactivation of suppressed divergent circuits synergizes strongly with inhibition of the principal oncogenic driver. Hence, reactivation of divergent pathways can be leveraged as a previously unrecognized strategy to enhance treatment responses.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Transformation, Neoplastic , Leukemia, B-Cell/metabolism , Leukemia, B-Cell/pathology , Signal Transduction , Animals , B-Lymphocytes/pathology , Cell Line, Tumor , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Mice , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , Proto-Oncogene Proteins c-myc/metabolism , STAT5 Transcription Factor/metabolism
8.
Nat Commun ; 9(1): 2024, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29789628

ABSTRACT

T- and NK-cell lymphomas (TCL) are a heterogenous group of lymphoid malignancies with poor prognosis. In contrast to B-cell and myeloid malignancies, there are few preclinical models of TCLs, which has hampered the development of effective therapeutics. Here we establish and characterize preclinical models of TCL. We identify multiple vulnerabilities that are targetable with currently available agents (e.g., inhibitors of JAK2 or IKZF1) and demonstrate proof-of-principle for biomarker-driven therapies using patient-derived xenografts (PDXs). We show that MDM2 and MDMX are targetable vulnerabilities within TP53-wild-type TCLs. ALRN-6924, a stapled peptide that blocks interactions between p53 and both MDM2 and MDMX has potent in vitro activity and superior in vivo activity across 8 different PDX models compared to the standard-of-care agent romidepsin. ALRN-6924 induced a complete remission in a patient with TP53-wild-type angioimmunoblastic T-cell lymphoma, demonstrating the potential for rapid translation of discoveries from subtype-specific preclinical models.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Lymphoma, Extranodal NK-T-Cell/drug therapy , Lymphoma, T-Cell/drug therapy , Nuclear Proteins/genetics , Peptides/pharmacology , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins/genetics , Tumor Suppressor Protein p53/genetics , Animals , Cell Cycle Proteins , Depsipeptides/pharmacology , Drug Evaluation, Preclinical , Humans , Ikaros Transcription Factor/antagonists & inhibitors , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Imidazolines/pharmacology , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Lymphoma, Extranodal NK-T-Cell/genetics , Lymphoma, Extranodal NK-T-Cell/metabolism , Lymphoma, Extranodal NK-T-Cell/pathology , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/metabolism , Lymphoma, T-Cell/pathology , Mice , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Protein Binding/drug effects , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Remission Induction , Signal Transduction , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Exome Sequencing , Xenograft Model Antitumor Assays
9.
Blood ; 131(21): 2345-2356, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29567799

ABSTRACT

In diffuse large B-cell lymphoma (DLBCL), activation of the B-cell receptor (BCR) promotes multiple oncogenic signals, which are essential for tumor proliferation. Inhibition of the Bruton's tyrosine kinase (BTK), a BCR downstream target, is therapeutically effective only in a subgroup of patients with DLBCL. Here, we used lymphoma cells isolated from patients with DLBCL to measure the effects of targeted therapies on BCR signaling and to anticipate response. In lymphomas resistant to BTK inhibition, we show that blocking BTK activity enhanced tumor dependencies from alternative oncogenic signals downstream of the BCR, converging on MYC upregulation. To completely ablate the activity of the BCR, we genetically and pharmacologically repressed the activity of the SRC kinases LYN, FYN, and BLK, which are responsible for the propagation of the BCR signal. Inhibition of these kinases strongly reduced tumor growth in xenografts and cell lines derived from patients with DLBCL independent of their molecular subtype, advancing the possibility to be relevant therapeutic targets in broad and diverse groups of DLBCL patients.


Subject(s)
Lymphoma, Non-Hodgkin/etiology , Lymphoma, Non-Hodgkin/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/drug effects , src-Family Kinases/antagonists & inhibitors , Adenine/analogs & derivatives , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Gene Expression , Genes, myc , Humans , Lymphoma, Non-Hodgkin/drug therapy , Lymphoma, Non-Hodgkin/pathology , Mice , Mice, Knockout , Piperidines , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays
10.
Nat Rev Cancer ; 18(4): 255-263, 2018 04.
Article in English | MEDLINE | ID: mdl-29376520

ABSTRACT

Therapeutics that block kinases, transcriptional modifiers, immune checkpoints and other biological vulnerabilities are transforming cancer treatment. As a result, many patients achieve dramatic responses, including complete radiographical or pathological remission, yet retain minimal residual disease (MRD), which results in relapse. New functional approaches can characterize clonal heterogeneity and predict therapeutic sensitivity of MRD at a single-cell level. Preliminary evidence suggests that iterative detection, profiling and targeting of MRD would meaningfully improve outcomes and may even lead to cure.


Subject(s)
Neoplasm, Residual/pathology , Neoplasm, Residual/therapy , Drug Therapy , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Precision Medicine/methods , Treatment Outcome
11.
Cancer Res ; 77(21): e62-e66, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29092942

ABSTRACT

Patient-derived tumor xenograft (PDX) mouse models have emerged as an important oncology research platform to study tumor evolution, mechanisms of drug response and resistance, and tailoring chemotherapeutic approaches for individual patients. The lack of robust standards for reporting on PDX models has hampered the ability of researchers to find relevant PDX models and associated data. Here we present the PDX models minimal information standard (PDX-MI) for reporting on the generation, quality assurance, and use of PDX models. PDX-MI defines the minimal information for describing the clinical attributes of a patient's tumor, the processes of implantation and passaging of tumors in a host mouse strain, quality assurance methods, and the use of PDX models in cancer research. Adherence to PDX-MI standards will facilitate accurate search results for oncology models and their associated data across distributed repository databases and promote reproducibility in research studies using these models. Cancer Res; 77(21); e62-66. ©2017 AACR.


Subject(s)
Neoplasms , Xenograft Model Antitumor Assays/statistics & numerical data , Animals , Databases as Topic , Disease Models, Animal , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Patients
12.
Nature ; 549(7670): 39-41, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28854165

Subject(s)
Neoplasms , Humans
13.
Nat Biotechnol ; 34(11): 1161-1167, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27723727

ABSTRACT

Assays that can determine the response of tumor cells to cancer therapeutics could greatly aid the selection of drug regimens for individual patients. However, the utility of current functional assays is limited, and predictive genetic biomarkers are available for only a small fraction of cancer therapies. We found that the single-cell mass accumulation rate (MAR), profiled over many hours with a suspended microchannel resonator, accurately defined the drug sensitivity or resistance of glioblastoma and B-cell acute lymphocytic leukemia cells. MAR revealed heterogeneity in drug sensitivity not only between different tumors, but also within individual tumors and tumor-derived cell lines. MAR measurement predicted drug response using samples as small as 25 µl of peripheral blood while maintaining cell viability and compatibility with downstream characterization. MAR measurement is a promising approach for directly assaying single-cell therapeutic responses and for identifying cellular subpopulations with phenotypic resistance in heterogeneous tumors.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Screening Assays, Antitumor/instrumentation , Lab-On-A-Chip Devices , Micro-Electrical-Mechanical Systems/instrumentation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/physiopathology , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor/methods , Equipment Design , Equipment Failure Analysis , Humans , Micro-Electrical-Mechanical Systems/methods , Neoplasms, Experimental/pathology , Treatment Outcome
14.
Nat Biotechnol ; 34(10): 1052-1059, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27598230

ABSTRACT

Methods to rapidly assess cell growth would be useful for many applications, including drug susceptibility testing, but current technologies have limited sensitivity or throughput. Here we present an approach to precisely and rapidly measure growth rates of many individual cells simultaneously. We flow cells in suspension through a microfluidic channel with 10-12 resonant mass sensors distributed along its length, weighing each cell repeatedly over the 4-20 min it spends in the channel. Because multiple cells traverse the channel at the same time, we obtain growth rates for >60 cells/h with a resolution of 0.2 pg/h for mammalian cells and 0.02 pg/h for bacteria. We measure the growth of single lymphocytic cells, mouse and human T cells, primary human leukemia cells, yeast, Escherichia coli and Enterococcus faecalis. Our system reveals subpopulations of cells with divergent growth kinetics and enables assessment of cellular responses to antibiotics and antimicrobial peptides within minutes.


Subject(s)
Cell Proliferation/drug effects , Cell Proliferation/physiology , Drug Evaluation, Preclinical/instrumentation , High-Throughput Screening Assays/instrumentation , Lab-On-A-Chip Devices , Micro-Electrical-Mechanical Systems/instrumentation , Drug Evaluation, Preclinical/methods , Equipment Design , Equipment Failure Analysis , High-Throughput Screening Assays/methods , Micro-Electrical-Mechanical Systems/methods , Reproducibility of Results , Sensitivity and Specificity , Transducers
16.
Am J Emerg Med ; 34(10): 1934-1938, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27412915

ABSTRACT

INTRODUCTION: Unplanned hospitalizations are common in patients with cancer, and most hospitalizations originate in the emergency department (ED). METHODS: We implemented an ED-based pilot intervention designed to reduce hospitalizations among patients with solid tumors. The intervention, piloted at a single academic medical center, involved a medical oncologist embedded in the ED during evening hours. We used a quasiexperimental preimplementation/postimplementation study design to evaluate the proportion of ED visits that resulted in inpatient hospital admission, before and after pilot implementation. General estimating equations were used to evaluate the association between the intervention and hospital admission. RESULTS: There were 390 ED visits by eligible cancer patients in the preintervention period and 418 visits in the intervention period. During the intervention period, 158 (38%) of 418 ED visits were identified by the embedded oncologist during the evening intervention shift. The proportion of ED visits leading to hospitalization was 70% vs 69% in the preintervention and intervention periods (odds ratio, 0.93 [95% confidence interval, 0.69-1.24]; P= .62). There were no differences between periods in ED length of stay or subsequent use of acute care. Among patients with initial ED presentation during the operating hours of the intervention, the proportion of ED visits leading to hospitalization was 77% vs 67% in the preintervention and intervention periods (odds ratio, 0.62 [0.36-1.08]; P= .08). CONCLUSION: Embedding an oncologist in the ED of an academic medical center did not significantly reduce hospital admissions. Novel approaches are needed to strengthen outpatient acute care for patients with cancer.


Subject(s)
Ambulatory Care/organization & administration , Emergency Service, Hospital/organization & administration , Neoplasms/therapy , Adolescent , Adult , Aged , Aged, 80 and over , Ambulatory Care/methods , Controlled Before-After Studies , Critical Care/methods , Critical Care/organization & administration , Emergency Service, Hospital/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Length of Stay/statistics & numerical data , Male , Medical Oncology/methods , Middle Aged , Pilot Projects , Young Adult
17.
Cancer Cell ; 29(4): 574-586, 2016 04 11.
Article in English | MEDLINE | ID: mdl-27070704

ABSTRACT

More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease.


Subject(s)
Heterografts , Leukemia/pathology , Lymphoma/pathology , Tissue Banks , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor , Cell Lineage , Female , Gene Expression Profiling , Genes, p53 , Humans , Internet , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Leukemia/metabolism , Leukemia, Experimental/drug therapy , Lymphoma/metabolism , Male , Mice , Mice, Inbred NOD , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Transplantation , Phenotype , Piperazines/pharmacology , Piperazines/therapeutic use , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proteome , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Random Allocation , Randomized Controlled Trials as Topic/methods , Research Design , Transcriptome
18.
Lancet Oncol ; 16(9): 1111-1122, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26256760

ABSTRACT

BACKGROUND: Follicular lymphoma is a clinically and genetically heterogeneous disease, but the prognostic value of somatic mutations has not been systematically assessed. We aimed to improve risk stratification of patients receiving first-line immunochemotherapy by integrating gene mutations into a prognostic model. METHODS: We did DNA deep sequencing to retrospectively analyse the mutation status of 74 genes in 151 follicular lymphoma biopsy specimens that were obtained from patients within 1 year before beginning immunochemotherapy consisting of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). These patients were recruited between May 4, 2000, and Oct 20, 2010, as part of a phase 3 trial (GLSG2000). Eligible patients had symptomatic, advanced stage follicular lymphoma and were previously untreated. The primary endpoints were failure-free survival (defined as less than a partial remission at the end of induction, relapse, progression, or death) and overall survival calculated from date of treatment initiation. Median follow-up was 7·7 years (IQR 5·5-9·3). Mutations and clinical factors were incorporated into a risk model for failure-free survival using multivariable L1-penalised Cox regression. We validated the risk model in an independent population-based cohort of 107 patients with symptomatic follicular lymphoma considered ineligible for curative irradiation. Pretreatment biopsies were taken between Feb 24, 2004, and Nov 24, 2009, within 1 year before beginning first-line immunochemotherapy consisting of rituximab, cyclophosphamide, vincristine, and prednisone (R-CVP). Median follow-up was 6·7 years (IQR 5·7-7·6). FINDINGS: We established a clinicogenetic risk model (termed m7-FLIPI) that included the mutation status of seven genes (EZH2, ARID1A, MEF2B, EP300, FOXO1, CREBBP, and CARD11), the Follicular Lymphoma International Prognostic Index (FLIPI), and Eastern Cooperative Oncology Group (ECOG) performance status. In the training cohort, m7-FLIPI defined a high-risk group (28%, 43/151) with 5-year failure-free survival of 38·29% (95% CI 25·31-57·95) versus 77·21% (95% CI 69·21-86·14) for the low-risk group (hazard ratio [HR] 4·14, 95% CI 2·47-6·93; p<0·0001; bootstrap-corrected HR 2·02), and outperformed a prognostic model of only gene mutations (HR 3·76, 95% CI 2·10-6·74; p<0·0001; bootstrap-corrected HR 1·57). The positive predictive value and negative predictive value for 5-year failure-free survival were 64% and 78%, respectively, with a C-index of 0·80 (95% CI 0·71-0·89). In the validation cohort, m7-FLIPI again defined a high-risk group (22%, 24/107) with 5-year failure-free survival of 25·00% (95% CI 12·50-49·99) versus 68·24% (58·84-79·15) in the low-risk group (HR 3·58, 95% CI 2·00-6·42; p<0.0001). The positive predictive value for 5-year failure-free survival was 72% and 68% for negative predictive value, with a C-index of 0·79 (95% CI 0·69-0·89). In the validation cohort, risk stratification by m7-FLIPI outperformed FLIPI alone (HR 2·18, 95% CI 1·21-3·92), and FLIPI combined with ECOG performance status (HR 2·03, 95% CI 1·12-3·67). INTERPRETATION: Integration of the mutational status of seven genes with clinical risk factors improves prognostication for patients with follicular lymphoma receiving first-line immunochemotherapy and is a promising approach to identify the subset at highest risk of treatment failure. FUNDING: Deutsche Krebshilfe, Terry Fox Research Institute.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/administration & dosage , Immunotherapy , Lymphoma, Follicular/drug therapy , Neoplasm Recurrence, Local/drug therapy , Adult , Aged , Antibodies, Monoclonal, Murine-Derived/immunology , Cyclophosphamide/administration & dosage , Disease-Free Survival , Doxorubicin , Female , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/immunology , Lymphoma, Follicular/pathology , Male , Middle Aged , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/pathology , Prednisone/administration & dosage , Prognosis , Retrospective Studies , Risk Factors , Treatment Outcome , Vincristine/administration & dosage
19.
Blood ; 117(13): 3539-47, 2011 Mar 31.
Article in English | MEDLINE | ID: mdl-21285438

ABSTRACT

Severe congenital neutropenia (SCN) is an inborn disorder of granulopoiesis that in many cases is caused by mutations of the ELANE gene, which encodes neutrophil elastase (NE). Recent data suggest a model in which ELANE mutations result in NE protein misfolding, induction of endoplasmic reticulum (ER) stress, activation of the unfolded protein response (UPR), and ultimately a block in granulocytic differentiation. To test this model, we generated transgenic mice carrying a targeted mutation of Elane (G193X) reproducing a mutation found in SCN. The G193X Elane allele produces a truncated NE protein that is rapidly degraded. Granulocytic precursors from G193X Elane mice, though without significant basal UPR activation, are sensitive to chemical induction of ER stress. Basal and stress granulopoiesis after myeloablative therapy are normal in these mice. Moreover, inaction of protein kinase RNA-like ER kinase (Perk), one of the major sensors of ER stress, either alone or in combination with G193X Elane, had no effect on basal granulopoiesis. However, inhibition of the ER-associated degradation (ERAD) pathway using a proteosome inhibitor resulted in marked neutropenia in G193X Elane. The selective sensitivity of G913X Elane granulocytic cells to ER stress provides new and strong support for the UPR model of disease patho-genesis in SCN.


Subject(s)
Agranulocytosis/genetics , Cell Differentiation/genetics , Granulocytes/physiology , Leukocyte Elastase/genetics , Unfolded Protein Response/genetics , Unfolded Protein Response/physiology , Agranulocytosis/congenital , Agranulocytosis/pathology , Animals , Congenital Bone Marrow Failure Syndromes , Disease Models, Animal , Female , Granulocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutant Proteins/metabolism , Mutant Proteins/physiology , Neutropenia/congenital , Neutropenia/genetics , Neutropenia/pathology , Pregnancy
20.
J Clin Invest ; 119(6): 1714-26, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19451695

ABSTRACT

Acute promyelocytic leukemia (APL) is characterized by the t(15;17) chromosomal translocation, which results in fusion of the retinoic acid receptor alpha (RARA) gene to another gene, most commonly promyelocytic leukemia (PML). The resulting fusion protein, PML-RARA, initiates APL, which is a subtype (M3) of acute myeloid leukemia (AML). In this report, we identify a gene expression signature that is specific to M3 samples; it was not found in other AML subtypes and did not simply represent the normal gene expression pattern of primary promyelocytes. To validate this signature for a large number of genes, we tested a recently developed high throughput digital technology (NanoString nCounter). Nearly all of the genes tested demonstrated highly significant concordance with our microarray data (P < 0.05). The validated gene signature reliably identified M3 samples in 2 other AML datasets, and the validated genes were substantially enriched in our mouse model of APL, but not in a cell line that inducibly expressed PML-RARA. These results demonstrate that nCounter is a highly reproducible, customizable system for mRNA quantification using limited amounts of clinical material, which provides a valuable tool for biomarker measurement in low-abundance patient samples.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Leukemia, Myeloid, Acute/genetics , Signal Processing, Computer-Assisted , Humans , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...