Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33514660

ABSTRACT

An effective vaccine that can protect against HIV infection does not exist. A major reason why a vaccine is not available is the high mutability of the virus, which enables it to evolve mutations that can evade human immune responses. This challenge is exacerbated by the ability of the virus to evolve compensatory mutations that can partially restore the fitness cost of immune-evading mutations. Based on the fitness landscapes of HIV proteins that account for the effects of coupled mutations, we designed a single long peptide immunogen comprising parts of the HIV proteome wherein mutations are likely to be deleterious regardless of the sequence of the rest of the viral protein. This immunogen was then stably expressed in adenovirus vectors that are currently in clinical development. Macaques immunized with these vaccine constructs exhibited T-cell responses that were comparable in magnitude to animals immunized with adenovirus vectors with whole HIV protein inserts. Moreover, the T-cell responses in immunized macaques strongly targeted regions contained in our immunogen. These results suggest that further studies aimed toward using our vaccine construct for HIV prophylaxis and cure are warranted.


Subject(s)
AIDS Vaccines/immunology , Adenoviridae/metabolism , Genetic Vectors/metabolism , HIV-1/immunology , Proteome/metabolism , Amino Acid Sequence , Animals , Antigens, Viral/immunology , Female , HIV Infections/immunology , Immunization , Macaca mulatta , Male , T-Lymphocytes, Cytotoxic/immunology , Viral Proteins/chemistry , Viral Proteins/metabolism
2.
Elife ; 92020 05 28.
Article in English | MEDLINE | ID: mdl-32463365

ABSTRACT

The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we present the nferX platform for dynamic inference from over 45 quadrillion possible conceptual associations from unstructured text, and triangulation with insights from single-cell RNA-sequencing, bulk RNA-seq and proteomics from diverse tissue types. A hypothesis-free profiling of ACE2 suggests tongue keratinocytes, olfactory epithelial cells, airway club cells and respiratory ciliated cells as potential reservoirs of the SARS-CoV-2 receptor. We find the gut as the putative hotspot of COVID-19, where a maturation correlated transcriptional signature is shared in small intestine enterocytes among coronavirus receptors (ACE2, DPP4, ANPEP). A holistic data science platform triangulating insights from structured and unstructured data holds potential for accelerating the generation of impactful biological insights and hypotheses.


Subject(s)
Coronavirus Infections/virology , Libraries, Medical , Pneumonia, Viral/virology , Receptors, Virus/metabolism , Animals , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/pathology , Gene Expression Profiling , Humans , Knowledge Discovery , Mice , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Receptors, Coronavirus , Receptors, Virus/chemistry , Receptors, Virus/genetics , SARS-CoV-2
3.
Virus Evol ; 5(2): vez029, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31392033

ABSTRACT

An effective vaccine is urgently required to curb the HIV-1 epidemic. We have previously described an approach to model the fitness landscape of several HIV-1 proteins, and have validated the results against experimental and clinical data. The fitness landscape may be used to identify mutation patterns harmful to virus viability, and consequently inform the design of immunogens that can target such regions for immunological control. Here we apply such an analysis and complementary experiments to HIV-1 Nef, a multifunctional protein which plays a key role in HIV-1 pathogenesis. We measured Nef-driven replication capacities as well as Nef-mediated CD4 and HLA-I down-modulation capacities of thirty-two different Nef mutants, and tested model predictions against these results. Furthermore, we evaluated the models using 448 patient-derived Nef sequences for which several Nef activities were previously measured. Model predictions correlated significantly with Nef-driven replication and CD4 down-modulation capacities, but not HLA-I down-modulation capacities, of the various Nef mutants. Similarly, in our analysis of patient-derived Nef sequences, CD4 down-modulation capacity correlated the most significantly with model predictions, suggesting that of the tested Nef functions, this is the most important in vivo. Overall, our results highlight how the fitness landscape inferred from patient-derived sequences captures, at least in part, the in vivo functional effects of mutations to Nef. However, the correlation between predictions of the fitness landscape and measured parameters of Nef function is not as accurate as the correlation observed in past studies for other proteins. This may be because of the additional complexity associated with inferring the cost of mutations on the diverse functions of Nef.

4.
Science ; 352(6288): 1001-4, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27199430

ABSTRACT

Antiretroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life cycle. In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1-infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by passively administered 3BNC117, a broadly neutralizing antibody, suggested that the effects of the antibody are not limited to free viral clearance and blocking new infection but also include acceleration of infected cell clearance. Consistent with these observations, we find that broadly neutralizing antibodies can target CD4(+) T cells infected with patient viruses and can decrease their in vivo half-lives by a mechanism that requires Fcγ receptor engagement in a humanized mouse model. The results indicate that passive immunotherapy can accelerate elimination of HIV-1-infected cells.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/therapy , HIV Infections/virology , HIV-1/immunology , Viral Load/immunology , Animals , Antibodies, Monoclonal, Humanized , Apoptosis/immunology , Broadly Neutralizing Antibodies , CD4-Positive T-Lymphocytes/immunology , Cell Line , Homeodomain Proteins/genetics , Humans , Immunization, Passive , Immunosuppression Therapy , Interleukin Receptor Common gamma Subunit/genetics , Mice , Mice, Inbred NOD , Mice, Mutant Strains , Receptors, IgG/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...