Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965413

ABSTRACT

Drylands are often overlooked in broad conservation frameworks and development priorities and face increasing threats from human activities. Here we evaluated the formal degree of protection of global drylands, their land vertebrate biodiversity and current threats, and projected human-induced land-use changes to drylands under different future climate change and socioeconomic scenarios. Overall, drylands have lower protected-area coverage (12%) compared to non-drylands (21%). Consequently, most dryland vertebrates including many endemic and narrow-ranging species are inadequately protected (0-2% range coverage). Dryland vertebrates are threatened by varied anthropogenic factors-including agricultural and infrastructure development (that is, artificial structures, surfaces, roads and industrial sites). Alarmingly, by 2100 drylands are projected to experience some degree of land conversion in 95-100% of their current natural habitat due to urban, agricultural and alternative energy expansion. This loss of undisturbed dryland regions is expected across different socioeconomic pathways, even under optimistic scenarios characterized by progressive climate policies and moderate socioeconomic trends.

2.
J Evol Biol ; 37(3): 274-282, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38300757

ABSTRACT

The persistence of non-neutral trait polymorphism is enigmatic because stabilizing selection is expected to deplete variation. In cryptically coloured prey, negative frequency-dependent selection due to search image formation by predators has been proposed to favour rare variants, promoting polymorphism. However, in a heterogeneous environment, locally varying disruptive selection favours patch type-specific optima, resulting in spatial segregation of colour variants. Here, we address whether negative frequency-dependent selection can overcome selection posed by habitat heterogeneity to promote local polymorphism using an individual-based model. In addition, we compare how prey and predator mobility may modify the outcome. Our model revealed that frequency-dependent predation could strongly promote local prey polymorphism, but only when differences between morphs in patch-specific fitness were small. The effect of frequency-dependent predation depended on the predator adjustment of search image and was hampered by the prey population structure. Gene flow due to prey movement counteracted local selection, promoted local polymorphism to some extent, and relaxed the conditions for polymorphism due to frequency-dependent predation. Importantly, abrupt spatial changes in morph frequencies decreased the probability that mobile frequency-dependent predators could maintain local prey polymorphism. Overall, our study suggests that in a spatially heterogeneous environment, negative frequency-dependent selection may help maintain local polymorphism but only under a limited range of conditions.


Subject(s)
Gene Flow , Polymorphism, Genetic , Animals , Color , Phenotype , Predatory Behavior
3.
Evolution ; 77(8): 1829-1841, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37279331

ABSTRACT

Sexual selection has long been thought to increase species diversification. Sexually selected traits, such as sexual signals that contribute to reproductive isolation, were thought to promote diversification. However, studies exploring links between sexually selected traits and species diversification have thus far primarily focused on visual or acoustic signals. Many animals often employ chemical signals (i.e., pheromones) for sexual communications, but large-scale analyses on the role of chemical communications in driving species diversification have been missing. Here, for the first time, we investigate whether traits associated with chemical communications-the presence of follicular epidermal glands-promote diversification across 6,672 lizard species. In most analyses, we found no strong association between the presence of follicular epidermal glands and species diversification rates, either across all lizard species or at lower phylogenetic scales. Previous studies suggest that follicular gland secretions act as species recognition signals that prevent hybridization during speciation in lizards. However, we show that geographic range overlap was no different in sibling species pairs with and without follicular epidermal glands. Together, these results imply that either follicular epidermal glands do not primarily function in sexual communications or sexually selected traits in general (here chemical communication) have a limited effect on species diversification. In our additional analysis accounting for sex-specific differences in glands, we again found no detectable effect of follicular epidermal glands on species diversification rates. Thus, our study challenges the general role of sexually selected traits in broad-scale species diversification patterns.


Subject(s)
Lizards , Male , Animals , Female , Lizards/genetics , Phylogeny , Pheromones , Sex Characteristics , Hybridization, Genetic
5.
Nature ; 615(7952): 461-467, 2023 03.
Article in English | MEDLINE | ID: mdl-36653454

ABSTRACT

The frequency, duration, and intensity of extreme thermal events are increasing and are projected to further increase by the end of the century1,2. Despite the considerable consequences of temperature extremes on biological systems3-8, we do not know which species and locations are most exposed worldwide. Here we provide a global assessment of land vertebrates' exposures to future extreme thermal events. We use daily maximum temperature data from 1950 to 2099 to quantify future exposure to high frequency, duration, and intensity of extreme thermal events to land vertebrates. Under a high greenhouse gas emission scenario (Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5); 4.4 °C warmer world), 41.0% of all land vertebrates (31.1% mammals, 25.8% birds, 55.5% amphibians and 51.0% reptiles) will be exposed to extreme thermal events beyond their historical levels in at least half their distribution by 2099. Under intermediate-high (SSP3-7.0; 3.6 °C warmer world) and intermediate (SSP2-4.5; 2.7 °C warmer world) emission scenarios, estimates for all vertebrates are 28.8% and 15.1%, respectively. Importantly, a low-emission future (SSP1-2.6, 1.8 °C warmer world) will greatly reduce the overall exposure of vertebrates (6.1% of species) and can fully prevent exposure in many species assemblages. Mid-latitude assemblages (desert, shrubland, and grassland biomes), rather than tropics9,10, will face the most severe exposure to future extreme thermal events. By 2099, under SSP5-8.5, on average 3,773 species of land vertebrates (11.2%) will face extreme thermal events for more than half a year period. Overall, future extreme thermal events will force many species and assemblages into constant severe thermal stress. Deep greenhouse gas emissions cuts are urgently needed to limit species' exposure to thermal extremes.


Subject(s)
Ecosystem , Extreme Heat , Geographic Mapping , Global Warming , Temperature , Vertebrates , Animals , Greenhouse Gases/adverse effects , Greenhouse Gases/supply & distribution , Mammals , Vertebrates/classification , History, 20th Century , History, 21st Century , Time Factors , Desert Climate , Grassland , Tropical Climate , Birds , Amphibians , Reptiles , Global Warming/prevention & control , Global Warming/statistics & numerical data , Extreme Heat/adverse effects
6.
J Chem Theory Comput ; 18(11): 6920-6931, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36269878

ABSTRACT

Protons display a high chemical activity and strongly affect the charge storage capability in confined interlayer spaces of two-dimensional (2D) materials. As such, an accurate representation of proton dynamics under confinement is important for understanding and predicting charge storage dynamics in these materials. While often ignored in atomistic-scale simulations, nuclear quantum effects (NQEs), e.g., tunneling, can be significant under confinement even at room temperature. Using the thermostatted ring polymer molecular dynamics implementation of path integral molecular dynamics (PIMD) in conjunction with the ReaxFF force field, density functional tight binding (DFTB), and NequIP neural network potential simulations, we investigate the role of NQEs on proton and water transport in bulk water and aqueous electrolytes under confinement in Ti3C2 MXenes. Although overall NQEs are relatively small, especially in bulk, we find that they can alter both quantitative values and qualitative trends on both proton transport and water self-diffusion under confinement relative to classical MD predictions. Therefore, our results suggest the need for NQEs to be considered to simulate aqueous systems under confinement for both qualitative and quantitative accuracy.

7.
Nanoscale ; 14(25): 9086-9096, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35713192

ABSTRACT

MXenes are promising materials for rechargeable metal ion batteries and supercapacitors due to their high energy storage capacities, high electrical and ionic conductivities, and ease of synthesis. In this study, we predict the structure and properties of hitherto unexplored Ti-boron nitride MXenes (Ti3BN and Ti3BNT2 where T = F, O, OH) using high-throughput density functional theory calculations. We identify multiple stable structures exhibiting high thermodynamic and mechanical stability with B and N atoms evenly dispersed in the lattice sites. The predicted properties of the BN MXenes show remarkable similarities to their carbide counterparts, including in their metallicity, elastic constants, and cation absorption properties. Significantly, these novel MXene compounds display high lithium storage capacities (>250 mA h g-1), as well as suitability for non-lithium ion storage (Na, K, Ca, Mg), making them attractive candidates for both batteries and supercapacitors. This class of MXenes therefore merits further theoretical and experimental investigation.

9.
Sci Adv ; 7(42): eabe5582, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34644103

ABSTRACT

Deciphering global trends in phylogenetic endemism is crucial for understanding broad-scale evolutionary patterns and the conservation of key elements of biodiversity. However, knowledge to date on global phylogenetic endemism and its determinants has been lacking. Here, we conduct the first global analysis of phylogenetic endemism patterns of land vertebrates (>30,000 species), their environmental correlates, and threats. We found that low temperature seasonality and high topographic heterogeneity were the main global determinants of phylogenetic endemism. While phylogenetic endemism hotspots cover 22% of Earth, these regions currently have a high human footprint, low natural land cover, minimal protection, and will be greatly affected by climate change. Evolutionarily unique, narrow-range species are crucial for sustaining biodiversity in the face of environmental change. Our global study advances the current understanding of this imperilled yet previously overlooked facet of biodiversity.

10.
J Biol Res (Thessalon) ; 28(1): 3, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33557958

ABSTRACT

Amniote vertebrates share a suite of extra-embryonic membranes that distinguish them from anamniotes. Other than that, however, their reproductive characteristics could not be more different. They differ in basic ectothermic vs endothermic physiology, in that two clades evolved powered flight, and one clade evolved a protective shell. In terms of reproductive strategies, some produce eggs and others give birth to live young, at various degrees of development. Crucially, endotherms provide lengthy parental care, including thermal and food provisioning-whereas ectotherms seldom do. These differences could be expected to manifest themselves in major differences between clades in quantitative reproductive traits. We review the reproductive characteristics, and the distributions of brood sizes, breeding frequencies, offspring sizes and their derivatives (yearly fecundity and biomass production rates) of the four major amniote clades (mammals, birds, turtles and squamates), and several major subclades (birds: Palaeognathae, Galloanserae, Neoaves; mammals: Metatheria and Eutheria). While there are differences between these clades in some of these traits, they generally show similar ranges, distribution shapes and central tendencies across birds, placental mammals and squamates. Marsupials and turtles, however, differ in having smaller offspring, a strategy which subsequently influences other traits.

11.
Sci Rep ; 9(1): 274, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30670756

ABSTRACT

The confusion effect - the decreased attack-to-kill ratio of a predator with increase in prey group size - is thought to be one of the main reasons for the evolution of group living in animals. Despite much interest, the influence of prey coloration on the confusion effect is not well understood. We hypothesized that dynamic colour change in motion (due to interference coloration or flash marks), seen widely in many group living animals, enhances the confusion effect. Utilizing a virtual tracking task with humans, we found targets that dynamically changed colour during motion were more difficult to track than targets with background matching patterns, and this effect was stronger at larger group sizes. The current study thus provides the first empirical evidence for the idea that dynamic colour change can benefit animals in a group and may explain the widespread occurrence of dynamic colorations in group-living animals.


Subject(s)
Color , Models, Biological , Predatory Behavior , Animals , Confusion/etiology , Motion , Population Density
12.
PeerJ ; 6: e5495, 2018.
Article in English | MEDLINE | ID: mdl-30155369

ABSTRACT

The development of methods to estimate rates of speciation and extinction from time-calibrated phylogenies has revolutionized evolutionary biology by allowing researchers to correlate diversification rate shifts with causal factors. A growing number of researchers are interested in testing whether the evolution of a trait or a trait variant has influenced speciation rate, and three modelling methods-BiSSE, MEDUSA and BAMM-have been widely used in such studies. We simulated phylogenies with a single speciation rate shift each, and evaluated the power of the three methods to detect these shifts. We varied the degree of increase in speciation rate (speciation rate asymmetry), the number of tips, the tip-ratio bias (ratio of number of tips with each character state) and the relative age in relation to overall tree age when the rate shift occurred. All methods had good power to detect rate shifts when the rate asymmetry was strong and the sizes of the two lineages with the distinct speciation rates were large. Even when lineage size was small, power was good when rate asymmetry was high. In our simulated scenarios, small lineage sizes appear to affect BAMM most strongly. Tip-ratio influenced the accuracy of speciation rate estimation but did not have a strong effect on power to detect rate shifts. Based on our results, we provide suggestions to users of these methods.

13.
J Evol Biol ; 31(11): 1675-1688, 2018 11.
Article in English | MEDLINE | ID: mdl-30102810

ABSTRACT

Understanding the functions of animal coloration has been a long-standing question in evolutionary biology. For example, the widespread occurrence of striking longitudinal stripes and colourful tails in lizards begs for an explanation. Experiments have suggested that colourful tails can deflect attacks towards the tail (the 'deflection' hypothesis), which is sacrificable in most lizards, thereby increasing the chance of escape. Studies also suggest that in moving lizards, longitudinal body stripes can redirect predators' strikes towards the tail through the 'motion dazzle' effect. Despite these experimental studies, the ecological factors associated with the evolution of such striking colorations remain unexplored. Here, we investigated whether predictions from motion dazzle and attack deflection could explain the widespread occurrence of these striking marks using comparative methods and information on eco-physiological variables (caudal autotomy, diel activity, microhabitat and body temperature) potentially linked to their functioning. We found both longitudinal stripes and colourful tails are associated with diurnal activity and with the ability to lose the tail. Compared to stripeless species, striped species are more likely to be ground-dwelling and have higher body temperature, emphasizing the connection of stripes to mobility and rapid escape strategy. Colourful tails and stripes have evolved multiple times in a correlated fashion, suggesting that their functions may be linked. Overall, our results together with previous experimental studies support the notion that stripes and colourful tails in lizards may have protective functions based on deflective and motion dazzle effects.


Subject(s)
Biological Evolution , Lizards/genetics , Lizards/physiology , Pigmentation/physiology , Tail , Animals , Behavior, Animal , Circadian Rhythm , Ecosystem , Genetic Speciation
15.
J Phys Condens Matter ; 29(15): 155302, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28170348

ABSTRACT

The presence of artificial correlations associated with Green-Kubo (GK) thermal conductivity calculations is investigated. The thermal conductivity of nano-suspensions is calculated by equilibrium molecular dynamics (EMD) simulations using GK relations. Calculations are first performed for a single alumina (Al2O3) nanoparticle dispersed in a water medium. For a particle size of 1 nm and volume fraction of 9%, results show enhancements as high as 235%, which is much higher than the Maxwell model predictions. When calculations are done with multiple suspended particles, no such anomalous enhancement is observed. This is because the vibrations in alumina crystal can act as low frequency perturbations, which can travel long distances through the surrounding water medium, characterized by higher vibration frequencies. As a result of the periodic boundaries, they re-enter the system resulting in a circular resonance of thermal fluctuations between the alumina particle and its own image, eventually leading to artificial correlations in the heat current autocorrelation function (HCACF), which when integrated yields abnormally high thermal conductivities. Adding more particles presents 'obstacles' with which the fluctuations interact and get dissipated, before they get fed back to the periodic image. A systematic study of the temporal evolution of HCACF indicates that the magnitude and oscillations of artificial correlations decrease substantially with increase in the number of suspended nanoparticles.

16.
R Soc Open Sci ; 3(6): 160057, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27429765

ABSTRACT

Conspicuous coloration, which presumably makes prey more visible to predators, has intrigued researchers for long. Contrastingly coloured, conspicuous striped patterns are common among lizards and other animals, but their function is not well known. We propose and test a novel hypothesis, the 'redirection hypothesis', wherein longitudinal striped patterns, such as those found on the anterior body parts of most lacertilians, redirect attacks away from themselves during motion towards less vulnerable posterior parts, for example, the autotomous tail. In experiments employing human 'predators' attacking virtual prey on a touchscreen, we show that longitudinal striped patterns on the anterior half of prey decreased attacks to the anterior and increased attacks to the posterior. The position of stripes mattered-they worked best when they were at the anterior. By employing an adaptive psychophysical procedure, we show that prey with striped patterning are perceived to move slower, offering a mechanistic explanation for the redirective effect. In summary, our results suggest that the presence of stripes on the body (i.e. head and trunk) of lizards in combination with caudal autotomy can work as an effective anti-predator strategy during motion.

SELECTION OF CITATIONS
SEARCH DETAIL
...