Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Nat Commun ; 15(1): 3258, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637498

ABSTRACT

Viral infections remain a major risk in immunocompromised pediatric patients, and virus-specific T cell (VST) therapy has been successful for treatment of refractory viral infections in prior studies. We performed a phase II multicenter study (NCT03475212) for the treatment of pediatric patients with inborn errors of immunity and/or post allogeneic hematopoietic stem cell transplant with refractory viral infections using partially-HLA matched VSTs targeting cytomegalovirus, Epstein-Barr virus, or adenovirus. Primary endpoints were feasibility, safety, and clinical responses (>1 log reduction in viremia at 28 days). Secondary endpoints were reconstitution of antiviral immunity and persistence of the infused VSTs. Suitable VST products were identified for 75 of 77 clinical queries. Clinical responses were achieved in 29 of 47 (62%) of patients post-HSCT including 73% of patients evaluable at 1-month post-infusion, meeting the primary efficacy endpoint (>52%). Secondary graft rejection occurred in one child following VST infusion as described in a companion article. Corticosteroids, graft-versus-host disease, transplant-associated thrombotic microangiopathy, and eculizumab treatment correlated with poor response, while uptrending absolute lymphocyte and CD8 T cell counts correlated with good response. This study highlights key clinical factors that impact response to VSTs and demonstrates the feasibility and efficacy of this therapy in pediatric HSCT.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Virus Diseases , Humans , Child , Herpesvirus 4, Human , Risk Factors , Hematopoietic Stem Cell Transplantation/adverse effects
2.
Front Immunol ; 14: 1212203, 2023.
Article in English | MEDLINE | ID: mdl-37901229

ABSTRACT

T cell immunity plays a central role in clinical outcomes of Coronavirus Infectious Disease 2019 (COVID-19) and T cell-focused vaccination or cellular immunotherapy might provide enhanced protection for some immunocompromised patients. Pre-existing T cell memory recognizing SARS-CoV-2 antigens antedating COVID-19 infection or vaccination, may have developed as an imprint of prior infections with endemic non-SARS human coronaviruses (hCoVs) OC43, HKU1, 229E, NL63, pathogens of "common cold". In turn, SARS-CoV-2-primed T cells may recognize emerging variants or other hCoV viruses and modulate the course of subsequent hCoV infections. Cross-immunity between hCoVs and SARS-CoV-2 has not been well characterized. Here, we systematically investigated T cell responses against the immunodominant SARS-CoV-2 spike, nucleocapsid and membrane proteins and corresponding antigens from α- and ß-hCoVs among vaccinated, convalescent, and unexposed subjects. Broad T cell immunity against all tested SARS-CoV-2 antigens emerged in COVID-19 survivors. In convalescent and in vaccinated individuals, SARS-CoV-2 spike-specific T cells reliably recognized most SARS-CoV-2 variants, however cross-reactivity against the omicron variant was reduced by approximately 47%. Responses against spike, nucleocapsid and membrane antigens from endemic hCoVs were significantly more extensive in COVID-19 survivors than in unexposed subjects and displayed cross-reactivity between α- and ß-hCoVs. In some, non-SARS hCoV-specific T cells demonstrated a prominent non-reciprocal cross-reactivity with SARS-CoV-2 antigens, whereas a distinct anti-SARS-CoV-2 immunological repertoire emerged post-COVID-19, with relatively limited cross-recognition of non-SARS hCoVs. Based on this cross-reactivity pattern, we established a strategy for in-vitro expansion of universal anti-hCoV T cells for adoptive immunotherapy. Overall, these results have implications for the future design of universal vaccines and cell-based immune therapies against SARS- and non-SARS-CoVs.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Humans , SARS-CoV-2 , RNA, Viral
3.
Front Immunol ; 14: 1207638, 2023.
Article in English | MEDLINE | ID: mdl-37465681

ABSTRACT

We present a case report of a 63-year-old female health care worker who is 15 years status post double lung transplant and six years status post living related donor kidney transplant who is healthy on a chronic immunosuppression regimen including prednisone, mycophenolate, and tacrolimus who received the SARS-CoV-2 mRNA vaccine (Pfizer-BioNTech BNT162b2) primary series and had poor initial humoral response to the COVID-19 mRNA vaccine, then demonstrated a robust, sustained immune response against S1 and S2 antigens for over seven months after receiving the recommended vaccine doses, including booster dose, without developing COVID-19 or other serious adverse events. Her immune response to vaccination indicates effective formation of anti-spike T cell memory despite chronic immunosuppression. This case report provides a comprehensive characterization of her immune response to this SARS-CoV-2 vaccination series. As vaccine effectiveness data is updated, and as better understanding of immune response including hybrid immunity emerges, these findings may reassure that recipients of SOTs may be capable of durable immune responses to emerging variants of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Kidney Transplantation , Female , Humans , Middle Aged , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Kidney Transplantation/adverse effects , Kinetics , Lung , SARS-CoV-2
4.
Nat Med ; 29(6): 1364-1369, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37322122

ABSTRACT

Reservoirs of HIV maintained in anatomic compartments during antiretroviral therapy prevent HIV eradication. However, mechanisms driving their persistence and interventions to control them remain elusive. Here we report the presence of an inducible HIV reservoir within antigen-specific CD4+T cells in the central nervous system of a 59-year-old male with progressive multifocal leukoencephalopathy immune reconstitution inflammatory syndrome (PML-IRIS). HIV production during PML-IRIS was suppressed by modulating inflammation with corticosteroids; selection of HIV drug resistance caused subsequent breakthrough viremia. Therefore, inflammation can influence the composition, distribution and induction of HIV reservoirs, warranting it as a key consideration for developing effective HIV remission strategies.


Subject(s)
HIV Infections , Immune Reconstitution Inflammatory Syndrome , Leukoencephalopathy, Progressive Multifocal , Male , Humans , Middle Aged , Immune Reconstitution Inflammatory Syndrome/drug therapy , Immune Reconstitution Inflammatory Syndrome/etiology , Leukoencephalopathy, Progressive Multifocal/drug therapy , Leukoencephalopathy, Progressive Multifocal/etiology , Brain , Central Nervous System
5.
bioRxiv ; 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36711835

ABSTRACT

T cell immunity plays a central role in clinical outcomes of Coronavirus Infectious Disease 2019 (COVID-19). Therefore, T cell-focused vaccination or cellular immunotherapy might provide enhanced protection for immunocompromised patients. Pre-existing T cell memory recognizing SARS-CoV2 antigens antedating COVID-19 infection or vaccination, may have developed as an imprint of prior infections with endemic non-SARS human coronaviruses (hCoVs) OC43, HKU1, 229E, NL63, pathogens of "common cold". In turn, SARS-CoV2-primed T cells may recognize emerging variants or other hCoV viruses and modulate the course of subsequent hCoV infections. Cross-immunity between hCoVs and SARS-CoV2 has not been well characterized. Here, we systematically investigated T cell responses against the immunodominant SARS-CoV2 spike, nucleocapsid and membrane proteins and corresponding antigens from α- and ß-hCoVs among vaccinated, convalescent, and unexposed subjects. Broad T cell immunity against all tested SARS-CoV2 antigens emerged in COVID-19 survivors. In convalescent and in vaccinated individuals, SARS-CoV2 spike-specific T cells reliably recognized most SARS-CoV2 variants, however cross-reactivity against the omicron variant was reduced by approximately 50%. Responses against spike, nucleocapsid and membrane antigens from endemic hCoVs were more extensive in COVID-19 survivors than in unexposed subjects and displayed cross-reactivity between α- and ß-hCoVs. In some, non-SARS hCoVspecific T cells demonstrated a prominent non-reciprocal cross-reactivity with SARS-CoV2 antigens, whereas a distinct anti-SARS-CoV2 immunological repertoire emerged post-COVID-19, with relatively limited cross-recognition of non-SARS hCoVs. Based on this cross-reactivity pattern, we established a strategy for in-vitro expansion of universal anti-hCoV T cells for adoptive immunotherapy. Overall, these results have implications for the future design of universal vaccines and cell-based immune therapies against SARS- and non-SARS-CoVs.

6.
Sci Rep ; 12(1): 559, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017558

ABSTRACT

Identification of cognate interactions between antigen-specific T cells and dendritic cells (DCs) is essential to understanding immunity and tolerance, and for developing therapies for cancer and autoimmune diseases. Conventional techniques for selecting antigen-specific T cells are time-consuming and limited to pre-defined antigenic peptide sequences. Here, we demonstrate the ability to use deep learning to rapidly classify videos of antigen-specific CD8+ T cells. The trained model distinguishes distinct interaction dynamics (in motility and morphology) between cognate and non-cognate T cells and DCs over 20 to 80 min. The model classified high affinity antigen-specific CD8+ T cells from OT-I mice with an area under the curve (AUC) of 0.91, and generalized well to other types of high and low affinity CD8+ T cells. The classification accuracy achieved by the model was consistently higher than simple image analysis techniques, and conventional metrics used to differentiate between cognate and non-cognate T cells, such as speed. Also, we demonstrated that experimental addition of anti-CD40 antibodies improved model prediction. Overall, this method demonstrates the potential of video-based deep learning to rapidly classify cognate T cell-DC interactions, which may also be potentially integrated into high-throughput methods for selecting antigen-specific T cells in the future.


Subject(s)
CD8-Positive T-Lymphocytes
7.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: mdl-34193566

ABSTRACT

BACKGROUND: Prostate cancer is the second leading cause of cancer-related death in men in the USA; death occurs when patients progress to metastatic castration-resistant prostate cancer (CRPC). Although immunotherapy with the Food and Drug Administration-approved vaccine sipuleucel-T, which targets prostatic acid phosphatase (PAP), extends survival for 2-4 months, the identification of new immunogenic tumor-associated antigens (TAAs) continues to be an unmet need. METHODS: We evaluated the differential expression profile of castration-resistant prostate epithelial cells that give rise to CRPC from mice following an androgen deprivation/repletion cycle. The expression levels of a set of androgen-responsive genes were further evaluated in prostate, brain, colon, liver, lung, skin, kidney, and salivary gland from murine and human databases. The expression of a novel prostate-restricted TAA was then validated by immunostaining of mouse tissues and analyzed in primary tumors across all human cancer types in The Cancer Genome Atlas. Finally, the immunogenicity of this TAA was evaluated in vitro and in vivo using autologous coculture assays with cells from healthy donors as well as by measuring antigen-specific antibodies in sera from patients with prostate cancer (PCa) from a neoadjuvant clinical trial. RESULTS: We identified a set of androgen-responsive genes that could serve as potential TAAs for PCa. In particular, we found transglutaminase 4 (Tgm4) to be highly expressed in prostate tumors that originate from luminal epithelial cells and only expressed at low levels in most extraprostatic tissues evaluated. Furthermore, elevated levels of TGM4 expression in primary PCa tumors correlated with unfavorable prognosis in patients. In vitro and in vivo assays confirmed the immunogenicity of TGM4. We found that activated proinflammatory effector memory CD8 and CD4 T cells were expanded by monocyte-derived dendritic cell (moDCs) pulsed with TGM4 to a greater extent than moDCs pulsed with either PAP or prostate-specific antigen (PSA), and T cells primed with TGM4-pulsed moDCs produce functional cytokines following a prime/boost regiment or in vitro stimulation. An IgG antibody response to TGM4 was detected in 30% of vaccinated patients, while fewer than 8% of vaccinated patients developed antibody responses to PSA or prostate-specific membrane antigen (PSMA). CONCLUSIONS: These results suggest that TGM4 is an immunogenic, prostate-restricted antigen with the potential for further development as an immunotherapy target.


Subject(s)
Immunotherapy/methods , Prostate/metabolism , Transglutaminases/metabolism , Animals , Humans , Male , Mice
8.
Lancet Neurol ; 20(8): 639-652, 2021 08.
Article in English | MEDLINE | ID: mdl-34302788

ABSTRACT

BACKGROUND: Progressive multifocal leukoencephalopathy, a rare disease of the CNS caused by JC virus and occurring in immunosuppressed people, is typically fatal unless adaptive immunity is restored. JC virus is a member of the human polyomavirus family and is closely related to the BK virus. We hypothesised that use of partly HLA-matched donor-derived BK virus-specific T cells for immunotherapy in progressive multifocal leukoencephalopathy would be feasible and safe. METHODS: We did an open-label, single-cohort pilot study in patients (aged 18 years or older) with clinically definite progressive multifocal leukoencephalopathy and disease progression in the previous month at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Overlapping peptide libraries derived from large T antigen and major capsid protein VP1 of BK virus with high sequence homology to JC virus counterparts were used to generate polyomavirus-specific T cells cross-recognising JC virus antigens. Polyomavirus-specific T cells were manufactured from peripheral blood mononuclear cells of first-degree relative donors aged 18 years or older. These cells were administered to patients by intravenous infusion at 1 × 106 polyomavirus-specific T cells per kg, followed by up to two additional infusions at 2 × 106 polyomavirus-specific T cells per kg. The primary endpoints were feasibility (no manufacturing failure based on meeting release criteria, achieving adequate numbers of cell product for clinical use, and showing measurable antiviral activity) and safety in all patients. The safety monitoring period was 28 days after each infusion. Patients were followed up with serial MRI for up to 12 months after the final infusion. This trial is registered at ClinicalTrials.gov, NCT02694783. FINDINGS: Between April 7, 2016, and Oct 19, 2018, 26 patients were screened, of whom 12 were confirmed eligible and received treatment derived from 14 matched donors. All administered polyomavirus-specific T cells met the release criteria and recognised cognate antigens in vitro. 12 patients received at least one infusion, ten received at least two, and seven received a total of three infusions. The median on-study follow-up was 109·5 days (range 23-699). All infusions were tolerated well, and no serious treatment-related adverse events were observed. Seven patients survived progressive multifocal leukoencephalopathy for longer than 1 year after the first infusion, whereas five died of progressive multifocal leukoencephalopathy within 3 months. INTERPRETATION: We showed that generation of polyomavirus-specific T cells from healthy related donors is feasible, and these cells can be safely used as an infusion for adoptive immunotherapy of progressive multifocal leukoencephalopathy. Although not powered to assess efficacy, our data provide additional support for this strategy as a potential life-saving therapy for some patients. FUNDING: Intramural Research Program of the National Institute of Neurological Disorders and Stroke of the NIH.


Subject(s)
BK Virus/immunology , Immunotherapy/methods , Leukoencephalopathy, Progressive Multifocal/therapy , T-Lymphocytes/immunology , Adult , Aged , Blood Donors , Cohort Studies , Endpoint Determination , Feasibility Studies , Female , Humans , Immunotherapy/adverse effects , JC Virus/immunology , Leukoencephalopathy, Progressive Multifocal/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Monocytes/immunology , Pilot Projects , Survival Analysis , Treatment Outcome , Young Adult
9.
Cytotherapy ; 23(11): 980-984, 2021 11.
Article in English | MEDLINE | ID: mdl-34183244

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) has disproportionately affected patients with comorbidities, including recipients of solid organ and hematopoietic stem cell transplants (SCT). Upon recovery from COVID-19, the degree of the immunological protection from reinfection remains unclear. Here we describe a 33-year-old patient with erythropoietic protoporphyria (EPP) who had undergone liver transplantation with splenectomy followed by allogeneic SCT in 2013 after an initial failed liver and umbilical cord transplant. The patient developed mild upper respiratory symptoms in the spring of 2020 and was found to have anti-SARS-CoV2 antibodies suggesting past infection. A comprehensive analysis of T cell functionality in peripheral blood from this patient revealed robust in vitro responses against SARS CoV2 antigens Spike (S) 1 and 2, membrane (M) and nucleoprotein (NP), comparable to the reactivity against common antigens from CMV, EBV, Ad and BK viruses, while only low reactivity was seen in healthy donors without documented history of COVID-19. Moreover, the patient displayed a marked recognition of counterpart antigens from related human coronaviruses (hCoVs) 229E, OC43, NL63 and HKU1. Thus, despite lifelong immunosuppression, this survivor of COVID-19 retained a remarkable degree of immunocompetence and showed broad-spectrum T cell memory specific for SARS-CoV2 and related hCoVs including less studied hCoV M and NP antigens. The study highlights the role of cellular immunity after natural COVID-19 infection, suggesting broader use of T cell assays as a tool for risk stratification, measurement of immunocompetence and/or post-infection or post-vaccination protection, and possible T cell-based adoptive immunotherapy strategies in high-risk patients.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Hematopoietic Stem Cell Transplantation , Adult , Antibodies, Viral , Humans , Liver , RNA, Viral , SARS-CoV-2 , T-Lymphocytes
10.
Transplant Cell Ther ; 27(7): 527-532, 2021 07.
Article in English | MEDLINE | ID: mdl-33915324

Subject(s)
Immunotherapy
11.
Transfus Apher Sci ; 60(1): 103056, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33478888

ABSTRACT

Adoptive cellular therapy (ACT) is a form of cancer immunotherapy in which lymphocytes are removed from patient blood or tumor samples, expanded and/or genetically modified to improve tumor-fighting capabilities, and infused back into the patient. The main forms of ACT include tumor infiltrating lymphocytes (TILs), engineered T cell receptor (TCR) T cells, and chimeric antigen receptor (CAR) T cells. While ACT has had success in hematological malignancies, particularly in B cell lymphomas targeted with CAR T cells, these favorable outcomes have yet to be replicated in solid tumors. Appropriate solid tumor target antigens are difficult to identify for ACT. Trafficking to tumor sites and infiltrating solid tumor burdens remains a problem for ACT cells. Persistence of ACT cells, which is important in creating a durable response, is also a major challenge, partly attributed to the formidable microtumor environment conditions. The costly and time-intensive manufacturing process for ACT is also an obstacle to widespread adoption. In this review, we discuss the challenges of ACT therapy in the treatment of solid tumors and explore the ongoing efforts to improve this immunotherapy approach in non-hematological malignancies.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Neoplasms/therapy , T-Lymphocytes/immunology , Humans , Neoplasms/pathology
12.
Front Immunol ; 11: 592721, 2020.
Article in English | MEDLINE | ID: mdl-33362774

ABSTRACT

Virus positive Merkel cell carcinoma (VP-MCC) is an aggressive but immunogenic skin malignancy driven by Merkel cell polyomavirus (MCPyV) T antigen (TAg). Since adoptive T cell transfer (ACT) can be effective against virus-driven malignancies, we set out to develop a methodology for generating MCPyV TAg specific T cells. MCPyV is a common, asymptomatic infection and virus-exposed healthy donors represent a potential source of MCPyV TAg specific T cells for ACT. Virus specific T cells were generated using monocyte-derived dendritic cells (moDCs) pulsed with MCPyV TAg peptide libraries and co-cultured with autologous T cells in supplemented with pro-inflammatory and homeostatic cytokines for 14 days. Specific reactivity was observed predominantly within the CD4+ T cell compartment in the cultures generated from 21/46 random healthy donors. Notably, responses were more often seen in donors aged 50 years and older. TAg specific CD4+ T cells specifically secreted Th1 cytokines and upregulated CD137 upon challenge with MCPyV TAg peptide libraries and autologous transduced antigen presenting cells. Expanded T cells from healthy donors recognized epitopes of both TAg splice variants found in VP-MCC tumors, and minimally expressed exhaustion markers. Our data show that MCPyV specific T cells can be expanded from healthy donors using methods appropriate for the manufacture of clinical grade ACT products.


Subject(s)
Adoptive Transfer , Carcinoma, Merkel Cell/therapy , Merkel cell polyomavirus/immunology , Polyomavirus Infections/immunology , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocytes/immunology , Tumor Virus Infections/immunology , Adoptive Transfer/methods , Age Factors , Aged , Antigens, Neoplasm/immunology , Biomarkers , Carcinoma, Merkel Cell/etiology , Cell Line , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epitopes/immunology , HLA Antigens , Humans , Immunophenotyping , Middle Aged , Polyomavirus Infections/complications , Polyomavirus Infections/virology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Tissue Donors , Translational Research, Biomedical , Tumor Virus Infections/complications , Tumor Virus Infections/virology
13.
Cell Rep ; 33(1): 108219, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33027660

ABSTRACT

Bone morphogenic proteins (BMPs) are members of the transforming growth factor ß (TGF-ß) cytokine family promoting differentiation, homeostasis, and self-renewal of multiple tissues. We show that signaling through the bone morphogenic protein receptor 1α (BMPR1α) sustains expression of FOXP3 in Treg cells in peripheral lymphoid tissues. BMPR1α signaling promotes molecular circuits supporting acquisition and preservation of Treg cell phenotype and inhibiting differentiation of pro-inflammatory effector Th1/Th17 CD4+ T cell. Mechanistically, increased expression of KDM6B (JMJD3) histone demethylase, an antagonist of the polycomb repressive complex 2, underlies lineage-specific changes of T cell phenotypes associated with abrogation of BMPR1α signaling. These results reveal that BMPs are immunoregulatory cytokines mediating maturation and stability of peripheral FOXP3+ regulatory T cells (Treg cells) and controlling generation of iTreg cells. Thus, we establish that BMPs, a large cytokine family, are an essential link between stromal tissues and the adaptive immune system involved in sustaining tissue homeostasis by promoting immunological tolerance.


Subject(s)
Bone Morphogenetic Proteins/immunology , Cytokines/metabolism , Forkhead Transcription Factors/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Humans , Mice
14.
N Engl J Med ; 380(17): 1597-1605, 2019 04 25.
Article in English | MEDLINE | ID: mdl-30969503

ABSTRACT

BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is an opportunistic brain infection that is caused by the JC virus and is typically fatal unless immune function can be restored. Programmed cell death protein 1 (PD-1) is a negative regulator of the immune response that may contribute to impaired viral clearance. Whether PD-1 blockade with pembrolizumab could reinvigorate anti-JC virus immune activity in patients with PML was unknown. METHODS: We administered pembrolizumab at a dose of 2 mg per kilogram of body weight every 4 to 6 weeks to eight adults with PML, each with a different underlying predisposing condition. Each patient received at least one dose but no more than three doses. RESULTS: Pembrolizumab induced down-regulation of PD-1 expression on lymphocytes in peripheral blood and in cerebrospinal fluid (CSF) in all eight patients. Five patients had clinical improvement or stabilization of PML accompanied by a reduction in the JC viral load in the CSF and an increase in in vitro CD4+ and CD8+ anti-JC virus activity. In the other three patients, no meaningful change was observed in the viral load or in the magnitude of antiviral cellular immune response, and there was no clinical improvement. CONCLUSIONS: Our findings are consistent with the hypothesis that in some patients with PML, pembrolizumab reduces JC viral load and increases CD4+ and CD8+ activity against the JC virus; clinical improvement or stabilization occurred in five of the eight patients who received pembrolizumab. Further study of immune checkpoint inhibitors in the treatment of PML is warranted. (Funded by the National Institutes of Health.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Immunologic Factors/therapeutic use , JC Virus/isolation & purification , Leukoencephalopathy, Progressive Multifocal/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Adult , Aged , Brain/diagnostic imaging , CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/physiology , Cerebrospinal Fluid/virology , Down-Regulation , Female , Humans , Immune Reconstitution Inflammatory Syndrome/etiology , Leukoencephalopathy, Progressive Multifocal/diagnostic imaging , Leukoencephalopathy, Progressive Multifocal/immunology , Lymphocyte Count , Magnetic Resonance Imaging , Male , Middle Aged , Programmed Cell Death 1 Receptor/metabolism , Viral Load , White Matter/diagnostic imaging , White Matter/pathology
15.
Biol Blood Marrow Transplant ; 25(2): 216-222, 2019 02.
Article in English | MEDLINE | ID: mdl-30292745

ABSTRACT

Blockade of the T-cell exhaustion marker PD-1 to re-energize the immune response is emerging as a promising cancer treatment. Relapse of hematologic malignancy after allogeneic stem cell transplantation limits the success of this approach, and PD-1 blockade may hold therapeutic promise. However, PD-1 expression and its relationship with post-transplant relapse is poorly described. Because the donor immunity is activated by alloresponses, PD-1 expression may differ from nontransplanted individuals, and PD-1 blockade could risk graft-versus-host disease. Here we analyzed T-cell exhaustion marker kinetics and their relationship with leukemia relapse in 85 patients undergoing myeloablative T-cell-depleted HLA-matched stem cell transplantation. At a median follow-up of 3.5 years, 35 (44%) patients relapsed. PD-1 expression in CD4 and CD8 T cells was comparably elevated in relapsed and nonrelapsed cohorts. Helios+ regulatory T cells and CD8 effector memory cells at day 30 emerged as independent predictors of relapse. Although leukemia antigen-specific T cells did not overexpress PD-1, single-cell analysis revealed LAG3 and TIM3 overexpression at relapse. These findings indicate that PD-1 is an unreliable marker for leukemia-specific T-cell exhaustion in relapsing patients but implies other exhaustion markers and suppressor cells as relapse biomarkers.


Subject(s)
Biomarkers, Tumor/immunology , Gene Expression Regulation, Leukemic/immunology , Leukemia , Neoplasm Proteins/immunology , Programmed Cell Death 1 Receptor/immunology , Stem Cell Transplantation , Adult , Allografts , Disease-Free Survival , Female , Follow-Up Studies , Humans , Leukemia/immunology , Leukemia/mortality , Leukemia/pathology , Leukemia/therapy , Male , Middle Aged , Recurrence , Survival Rate
16.
Curr Opin Hematol ; 25(6): 486-493, 2018 11.
Article in English | MEDLINE | ID: mdl-30281036

ABSTRACT

PURPOSE OF REVIEW: Latent viruses such as cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus (ADV) often reactivate in immunocompromised patients, contributing to poor clinical outcomes. A rapid reconstitution of antiviral responses via adoptive transfer of virus-specific T cells (VSTs) can prevent or eradicate even refractory infections. Here, we evaluate this strategy and the associated methodological, manufacturing and clinical advances. RECENT FINDINGS: From the early pioneering but cumbersome efforts to isolate CMV-specific T cell clones, new approaches and techniques have been developed to provide quicker, safer and broader-aimed ex-vivo antigen-specific cells. New manufacturing strategies, such as the use of G-Rex flasks or 'priming' with a library of overlapping viral peptides, allow for culturing greater numbers of cells that could be patient-specific or stored in cell banks for off-the-shelf applications. Rapid isolation of T cells using major histocompatibility complex tetramer or cytokine capture approaches, or genetic reprogramming of cells to target viral antigens can accelerate the generation of potent cellular products. SUMMARY: Advances in the ex-vivo generation of VSTs in academic medical centres and as off-the-shelf blood bank-based or commercially produced reagents are likely to result in broader accessibility and possible manufacturing cost reduction of these cell products, and will open new therapeutic prospects for vulnerable and critically ill immunocompromised patients.


Subject(s)
Adoptive Transfer , T-Lymphocytes , Virus Diseases , Humans , Cytomegalovirus/drug effects , Cytomegalovirus/immunology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Virus Diseases/immunology
17.
Sci Signal ; 11(545)2018 08 28.
Article in English | MEDLINE | ID: mdl-30154100

ABSTRACT

The cytokines of the transforming growth factor-ß (TGF-ß) family promote the growth and differentiation of multiple tissues, but the role of only the founding member, TGF-ß, in regulating the immune responses has been extensively studied. TGF-ß is critical to prevent the spontaneous activation of self-reactive T cells and sustain immune homeostasis. In contrast, in the presence of proinflammatory cytokines, TGF-ß promotes the differentiation of effector T helper 17 (TH17) cells. Abrogating TGF-ß receptor signaling prevents the development of interleukin-17 (IL-17)-secreting cells and protects mice from TH17 cell-mediated autoimmunity. We found that the receptor of another member of TGF-ß family, bone morphogenetic protein receptor 1α (BMPR1α), regulates T helper cell activation. We found that the differentiation of TH17 cells from naive CD4+ T cells was inhibited in the presence of BMPs. Abrogation of BMPR1α signaling during CD4+ T cell activation induced a developmental program that led to the generation of inflammatory effector cells expressing large amounts of IL-17, IFN-γ, and TNF family cytokines and transcription factors defining the TH17 cell lineage. We found that TGF-ß and BMPs cooperated to establish effector cell functions and the cytokine profile of activated CD4+ T cells. Together, our data provide insight into the immunoregulatory function of BMPs.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I/immunology , Signal Transduction/immunology , Th17 Cells/immunology , Transforming Growth Factor beta/immunology , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Female , Gene Expression Profiling/methods , Gene Expression Regulation/immunology , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
18.
J Immunol ; 201(7): 1967-1974, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30104242

ABSTRACT

Immune stimulation contributes to lenalidomide's antitumor activity. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of mature, autoreactive B cells in secondary lymphoid tissues, blood, and bone marrow and progressive immune dysfunction. Previous studies in CLL indicated that lenalidomide can repair defective T cell function in vitro. Whether T cell activation is required for clinical response to lenalidomide remains unclear. In this study, we report changes in the immune microenvironment in patients with CLL treated with single-agent lenalidomide and associate the immunologic effects of lenalidomide with antitumor response. Within days of starting lenalidomide, T cells increased in the tumor microenvironment and showed Th1-type polarization. Gene expression profiling of pretreatment and on-treatment lymph node biopsy specimens revealed upregulation of IFN-γ and many of its target genes in response to lenalidomide. The IFN-γ-mediated Th1 response was limited to patients achieving a clinical response defined by a reduction in lymphadenopathy. Deep sequencing of TCR genes revealed decreasing diversity of the T cell repertoire and an expansion of select clonotypes in responders. To validate our observations, we stimulated T cells and CLL cells with lenalidomide in culture and detected lenalidomide-dependent increases in T cell proliferation. Taken together, our data demonstrate that lenalidomide induced Th1 immunity in the lymph node that is associated with clinical response.


Subject(s)
Antineoplastic Agents/therapeutic use , Lenalidomide/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Receptors, Antigen, T-Cell, alpha-beta/genetics , Th1 Cells/immunology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Gene Expression Profiling , Humans , Immunization , Interferon-gamma/metabolism , Lymphocyte Activation , Receptors, Antigen, T-Cell/genetics , Treatment Outcome , Tumor Microenvironment
19.
Biol Blood Marrow Transplant ; 24(3): 460-466, 2018 03.
Article in English | MEDLINE | ID: mdl-29197677

ABSTRACT

Various approaches have been developed for ex vivo T cell depletion in allogeneic stem cell transplantation to prevent graft-versus-host disease (GVHD). Direct comparisons of T cell depletion strategies have not been well studied, however. We evaluated cellular and plasma biomarkers in 2 different graft manipulation strategies, CD3+CD19+ cell depletion (CD3/19D) versus CD34+ selection (CD34S), and their associations with clinical outcomes. Identical conditions, including the myeloablative preparative regimen, HLA-identical sibling donor, GVHD prophylaxis, and graft source, were used in the 2 cohorts. Major clinical outcomes were similar in the 2 groups in terms of overall survival, nonrelapse mortality, and cumulative incidence of relapse; however, the cumulative incidence of acute GVHD trended to be higher in the CD3/19D cohort compared with the CD34S cohort. A distinct biomarker profile was noted in the CD3/19D cohort: higher levels of ST2, impaired Helios- FoxP3+Treg reconstitution, and rapid reconstitution of naïve, Th2, and Th17 CD4 cells in the early post-transplantation period. In vitro graft replication studies confirmed that CD3/19D disproportionately depleted Tregs and other CD4 subset repertoires in the graft. This study confirms the utility of biomarker monitoring, which can be directly correlated with biological consequences and possible future therapeutic indications.


Subject(s)
Antigens, CD19/immunology , Antigens, CD34/immunology , Hematologic Neoplasms , Lymphocyte Depletion , Peripheral Blood Stem Cell Transplantation , Siblings , T-Lymphocytes, Helper-Inducer/immunology , Tissue Donors , Transplantation Conditioning/methods , Adolescent , Adult , Aged , Allografts , Child , Female , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Hematologic Neoplasms/immunology , Hematologic Neoplasms/mortality , Hematologic Neoplasms/therapy , Humans , Male , Middle Aged , Prospective Studies
20.
Cytotherapy ; 19(11): 1302-1316, 2017 11.
Article in English | MEDLINE | ID: mdl-28927823

ABSTRACT

Rapid restoration of virus-specific T immunity via adoptive transfer of ex vivo generated T cells has been proven as a powerful therapy for patients with advanced cancers and refractory viral infections such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV). BK virus (BKV), John Cunningham virus (JCV), and Merkel cell carcinoma virus (MCV) are the members of the rapidly growing human polyomavirus (hPyV) family that commonly infects most healthy humans. These viruses have a clearly established potential for causing severe end-organ damage or malignant transformation, especially in individuals with weakened immunity who are unable to mount or regain endogenous T-cell responses as a result of underlying leukemia or iatrogenic immunosuppression in autoimmunity, bone marrow and solid organ transplant settings. Here we will discuss recent advances in using T-cell-based immunotherapies to save patients suffering from PyV-associated diseases including hemorrhagic cystitis, BKV virus-associated nephropathy, and JC-associated progressive multifocal leukoencephalopathy (PML). We will also review progress in the understanding of Merkel cell carcinoma (MCC) as a virally driven tumor that is amenable to immune intervention and can be targeted with adoptively transferred T cells specific for viral oncoproteins.


Subject(s)
Cell Transplantation/methods , Immunotherapy, Adoptive/methods , Polyomavirus Infections/therapy , Herpesvirus 4, Human/pathogenicity , Humans , Immunocompromised Host , Kidney Diseases/virology , Polyomavirus/pathogenicity , Polyomavirus Infections/immunology , T-Lymphocytes/transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...