Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829522

ABSTRACT

Compounds harboring high acidity and oxidizability of thiol groups permit tuning the redox equilibrium constants of CxxC sites of members of the protein disulphide isomerase (PDI) family and thus can be used to accelerate folding processes and increase the production of native proteins by minimal loading in comparison to glutathione.

2.
Biomacromolecules ; 25(6): 3499-3506, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38720562

ABSTRACT

Reactive oxygen species (ROS) are produced by cellular activities, such as metabolism and immune response, and play important roles in cell signaling and homeostasis. However, overproduced ROS causes irreversible damage to nucleic acids and membrane lipids, supporting genetic mutations and enhancing the effects of aging. Cells defend themselves against ROS using antioxidant systems based on redox-active sulfur and transition metals. Inspired by such biological redox-responsive systems, we developed methionine-containing self-assembling peptides. The Met-containing peptides formed hydrogels that underwent a gel-to-sol phase transition upon oxidation by H2O2, and the sensitivity of the peptides to the oxidant increased as the number of Met residues increased. The peptide containing three Met residues, the largest number of Met residues in our series of designed peptides, showed the highest sensitivity to oxidation and detoxification to protect cells from ROS damage. In addition, this peptide underwent a phase transition in response to H2O2 produced by an oxidizing enzyme. This study demonstrates the design of a supramolecular biomaterial that is responsive to enzymatically generated ROS and can protect cells against oxidative stress.


Subject(s)
Antioxidants , Methionine , Peptides , Phase Transition , Reactive Oxygen Species , Methionine/chemistry , Methionine/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Reactive Oxygen Species/metabolism , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Humans , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Oxidative Stress/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Oxidation-Reduction
3.
Cell Rep ; 43(4): 114101, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38613786

ABSTRACT

Syntaxin-1A (stx1a) repression causes a neurodevelopmental disorder phenotype, low latent inhibition (LI) behavior, by disrupting 5-hydroxytryptaminergic (5-HTergic) systems. Herein, we discovered that lysine acetyltransferase (KAT) 3B increases stx1a neuronal transcription and TTK21, a KAT3 activator, induces stx1a transcription and 5-HT release in vitro. Furthermore, glucose-derived CSP-TTK21 could restore decreased stx1a expression, 5-HTergic systems in the brain, and low LI in stx1a (+/-) mice by crossing the blood-brain barrier, whereas the KAT3 inhibitor suppresses stx1a expression, 5-HTergic systems, and LI behaviors in wild-type mice. Finally, in wild-type and stx1a (-/-) mice treated with IKK inhibitors and CSP-TTK21, respectively, we show that KAT3 activator-induced LI improvement is a direct consequence of KAT3B-stx1a pathway, not a side effect. In conclusion, KAT3B can positively regulate stx1a transcription in neurons, and increasing neuronal stx1a expression and 5-HTergic systems by a KAT3 activator consequently improves the low LI behavior in the stx1a ablation mouse model.


Subject(s)
E1A-Associated p300 Protein , Syntaxin 1 , Animals , Mice , Disease Models, Animal , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Phenotype , Serotonin/metabolism , Syntaxin 1/metabolism , Syntaxin 1/genetics , Lysine Acetyltransferases/metabolism , E1A-Associated p300 Protein/metabolism
4.
Chem Sci ; 15(7): 2282-2299, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362427

ABSTRACT

Proper folding is essential for the biological functions of all proteins. The folding process is intrinsically error-prone, and the misfolding of a polypeptide chain can cause the formation of toxic aggregates related to pathological outcomes such as neurodegenerative disease and diabetes. Chaperones and some enzymes are involved in the cellular proteostasis systems that assist polypeptide folding to diminish the risk of aggregation. Elucidating the molecular mechanisms of chaperones and related enzymes is important for understanding proteostasis systems and protein misfolding- and aggregation-related pathophysiology. Furthermore, mechanistic studies of chaperones and related enzymes provide important clues to designing chemical mimics, or chemical chaperones, that are potentially useful for recovering proteostasis activities as therapeutic approaches for treating and preventing protein misfolding-related diseases. In this Perspective, we provide a comprehensive overview of the latest understanding of the folding-promotion mechanisms by chaperones and oxidoreductases and recent progress in the development of chemical mimics that possess activities comparable to enzymes, followed by a discussion of future directions.

5.
Angew Chem Int Ed Engl ; 63(9): e202318548, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38169344

ABSTRACT

Chiral D2 -symmetric figure-eight shaped macrocycles are promising scaffolds for amplifying the chiroptical properties of π-conjugated systems. By harnessing the inherent and adaptable conformational dynamics of a chiral C2 -symmetric bispyrrolidinoindoline (BPI) manifold, we developed an enantio-divergent modular synthetic platform to rapidly generate a diverse range of chiral macrocycles, spanning from 14- to 66-membered rings, eliminating the need for optical resolution. Notably, a 32-membered figure-eight macrocycle showed excellent circularly polarized luminescence (CPL: |glum |=1.1×10-2 ) complemented by a robust emission quantum yield (Φfl =0.74), to achieve outstanding CPL brightness (BCPL : ϵ×Φfl ×|glum |/2=480). Using quadruple Sonogashira couplings, this versatile synthetic platform enables precise adjustments of the angle, distance, and length among intersecting π-conjugated chromophores. Our synthetic strategy offers a streamlined and systematic approach to significantly enhance BCPL values for a variety of chiral D2 -symmetric figure-eight macrocycles.

6.
Chem Sci ; 14(28): 7630-7636, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37476727

ABSTRACT

We report the first example of a synthetic thiol-based compound that promotes oxidative protein folding upon 1-equivalent loading to the disulfide bonds in the client protein to afford the native form in over 70% yield. N-Methylation is a central post-translational processing of proteins in vivo for regulating functions including chaperone activities. Despite the universally observed biochemical reactions in nature, N-methylation has hardly been utilized in the design, functionalization, and switching of synthetic bioregulatory agents, particularly folding promotors. As a biomimetic approach, we developed pyridinylmethanethiols to investigate the effects of N-methylation on the promotion of oxidative protein folding. For a comprehensive study on the geometrical effects, constitutional isomers of pyridinylmethanethiols with ortho-, meta-, and para-substitutions have been synthesized. Among the constitutional isomers, para-substituted pyridinylmethanethiol showed the fastest disulfide-bond formation of the client proteins to afford the native forms most efficiently. N-Methylation drastically increased the acidity and enhanced the oxidizability of the thiol groups in the pyridinylmethanethiols to enhance the folding promotion efficiencies. Among the isomers, para-substituted N-methylated pyridinylmethanethiol accelerated the oxidative protein folding reactions with the highest efficiency, allowing for protein folding promotion by 1-equivalent loading as a semi-enzymatic activity. This study will offer a novel bioinspired molecular design of synthetic biofunctional agents that are semi-enzymatically effective for the promotion of oxidative protein folding including biopharmaceuticals such as insulin in vitro by minimum loading.

7.
Chem Commun (Camb) ; 59(64): 9687-9697, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37440181

ABSTRACT

This Feature Article focuses on recent studies on the development of self-assembling materials that mimic and control dynamic bio-interfaces. Extracellular matrix (ECM) is a fundamental tissue at the cellular interface constructed by networks of fibrous proteins, which regulates a variety of cellular activities. Reconstruction of ECM has been demonstrated by self-assembling peptides. By combining the dynamic properties of the self-assembling peptides conjugated with full-length proteins, peptide-based supramolecular materials enable neuronal migration and regeneration of injured neural tissue. The phospholipid bilayer is the main component of the cell membrane. The morphology and deformation of the phospholipid bilayer relate directly to dynamic interfacial functions. Stabilization of the phospholipid nanosheet structure has been demonstrated by self-assembling peptides, and the stabilized bicelle is functional for extended blood circulation. By using a photo-responsive synthetic surfactant showing a mechanical opening/closing motion, endocytosis-like outside-in membrane deformation is triggered. The outside-in deformation allows for efficient encapsulation of micrometer-size substances such as phage viruses into the liposomes, and the encapsulated viruses can be delivered to multiple organs in a living body via blood administration. These supramolecular approaches to mimicking and controlling bio-interfaces present powerful ways to develop unprecedented regenerative medicines and drug delivery systems.


Subject(s)
Peptides , Phospholipids , Peptides/chemistry , Extracellular Matrix/chemistry , Cell Membrane , Biocompatible Materials
8.
Chembiochem ; 24(9): e202200798, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36755465

ABSTRACT

The gel-sol transition of self-assembling peptides is a useful switch for environment-dependent drug release. For their applications, kinetics control of the responses is important for matching the velocity of release to the target biological events. Here we demonstrate the chemical control of redox-triggered gel-sol transition kinetics of self-assembling peptides by altering the amino acid sequence. Amphiphilic peptides were developed in which a methionine residue was located in the middle (JigSAP-IMI) or near the N terminus (JigSAP-MII). Both peptides formed hydrogels under physiological conditions-forming ß-sheet-based supramolecular nanofibers. In contrast, the oxidized forms remained in the solution state under identical conditions-adopting α-helix-rich secondary structures. Upon oxidation with H2 O2 , a reactive oxygen species, JigSAP-MII showed a faster gel-to-sol transition and cargo-releasing than JigSAP-IMI, thus indicating that the phase-transition and releasing kinetics of self-assembling peptides can be rationally controlled by the position of the reactive amino acid residue.


Subject(s)
Methionine , Peptides , Reactive Oxygen Species , Peptides/chemistry , Hydrogels/chemistry , Amino Acid Sequence , Racemethionine
9.
J Am Chem Soc ; 145(11): 6210-6220, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36853954

ABSTRACT

Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.


Subject(s)
Endocytosis , Membrane Proteins , Cell Membrane/metabolism , Membrane Proteins/metabolism , Liposomes/chemistry , Biological Transport
10.
Biomaterials ; 294: 122003, 2023 03.
Article in English | MEDLINE | ID: mdl-36736095

ABSTRACT

The mammalian brain has very limited ability to regenerate lost neurons and recover function after injury. Promoting the migration of young neurons (neuroblasts) derived from endogenous neural stem cells using biomaterials is a new and promising approach to aid recovery of the brain after injury. However, the delivery of sufficient neuroblasts to distant injured sites is a major challenge because of the limited number of scaffold cells that are available to guide neuroblast migration. To address this issue, we have developed an amphiphilic peptide [(RADA)3-(RADG)] (mRADA)-tagged N-cadherin extracellular domain (Ncad-mRADA), which can remain in mRADA hydrogels and be injected into deep brain tissue to facilitate neuroblast migration. Migrating neuroblasts directly contacted the fiber-like Ncad-mRADA hydrogel and efficiently migrated toward an injured site in the striatum, a deep brain area. Furthermore, application of Ncad-mRADA to neonatal cortical brain injury efficiently promoted neuronal regeneration and functional recovery. These results demonstrate that self-assembling Ncad-mRADA peptides mimic both the function and structure of endogenous scaffold cells and provide a novel strategy for regenerative therapy.


Subject(s)
Cadherins , Neural Stem Cells , Animals , Brain , Neurons , Peptides , Mammals
11.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558072

ABSTRACT

Approximately 30% or more of the total proteins annotated from sequenced bacteria genomes are annotated as hypothetical or uncharacterized proteins. However, elucidation on the function of these proteins is hindered by the lack of simple and rapid screening methods, particularly with novel or hard-to-transform bacteria. In this report, we employed cell-penetrating peptide (CPP) -peptide nucleotide acid (PNA) conjugates to elucidate the function of such uncharacterized proteins in vivo within the native bacterium. Paenibacillus, a hard-to-transform bacterial genus, was used as a model. Two hypothetical genes showing amino acid sequence similarity to ι-carrageenases, termed cgiA and cgiB, were identified from the draft genome of Paenibacillus sp. strain YYML68, and CPP-PNA probes targeting the mRNA of the acyl carrier protein gene, acpP, and the two ι-carrageenase candidate genes were synthesized. Upon direct incubation of CPP-PNA targeting the mRNA of the acpP gene, we successfully observed growth inhibition of strain YYML68 in a concentration-dependent manner. Similarly, both the function of the candidate ι-carrageenases were also inhibited using our CPP-PNA probes allowing for the confirmation and characterization of these hypothetical proteins. In summary, we believe that CPP-PNA conjugates can serve as a simple and efficient alternative approach to characterize proteins in the native bacterium.


Subject(s)
Cell-Penetrating Peptides , Nucleic Acids , Peptide Nucleic Acids , Peptide Nucleic Acids/chemistry , Cell-Penetrating Peptides/genetics , Amino Acid Sequence , Bacteria/metabolism
12.
RSC Adv ; 12(41): 26658-26664, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36275147

ABSTRACT

Folding is a key process to form functional conformations of proteins. Folding via on-pathway intermediates leads to the formation of native structures, while folding through off-pathways affords non-native and disease-causing forms. Trapping folding intermediates and misfolded forms is important for investigating folding mechanisms and disease-related biological properties of the misfolded proteins. We developed cysteine-containing dipeptides conjugated with amino acids possessing mono- and diamino-groups. In oxidative protein folding involving disulfide-bond formation, the addition of cysteine and oxidized glutathione readily promoted the folding to afford native forms. In contrast, despite the acceleration of disulfide-bond formation, non-native isomers formed in significantly increased yields upon the addition of the dipeptides. This study provides a molecular design of cysteine-based protein-folding modulators that afford proteins adopting non-native conformations through intermolecular disulfide-bond formation. Because of the intrinsic reversibility of the disulfide bonds upon redox reactions, the disulfide bond-based approach demonstrated here is expected to lead to the development of reversible methodologies for trapping transient and misfolded forms by intermolecular disulfide bond formation and restarting the folding processes of the trapped forms by subsequent cleavage of the intermolecular disulfide bonds.

14.
Neurochem Res ; 47(9): 2488-2498, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35666393

ABSTRACT

Ischemic stroke leads to acute neuron death and forms an injured core, triggering delayed cell death at the penumbra. The impaired brain functions after ischemic stroke are hardly recovered because of the limited regenerative properties. However, recent rodent intervention studies manipulating the extracellular environments at the subacute phase shed new light on the regenerative potency of the injured brain. This review introduces the rational design of artificial extracellular matrix (ECM) mimics using supramolecular peptidic scaffolds, which self-assemble via non-covalent bonds and form hydrogels. The facile customizability of the peptide structures allows tuning the hydrogels' physical and biochemical properties, such as charge states, hydrophobicity, cell adhesiveness, stiffness, and stimuli responses. Supramolecular peptidic materials can create safer and more economical drugs than polymer materials and cell transplantation. We also discuss the importance of activating developmental programs for the recovery at the subacute phase of ischemic stroke. Self-assembling molecular medicine mimicking the ECMs and activating developmental programs may stand as a new drug modality of regenerative medicine in various tissues.


Subject(s)
Ischemic Stroke , Tissue Engineering , Extracellular Matrix , Humans , Hydrogels/chemistry , Molecular Medicine , Peptides/chemistry , Regenerative Medicine
15.
Chem Commun (Camb) ; 58(33): 5164-5167, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35388392

ABSTRACT

A metal-binding peptide appending cholic acid, Chol-MBP, formed bicelles by mixing with 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC). Coordination of Chol-MBP with Cu2+ stabilized DPPC bicelles against dilution and contamination of serum proteins, enabling extended blood circulation. This study demonstrates an effective supramolecular design of phospholipid bicelles with enhanced stability useful for membrane-based biomaterials.


Subject(s)
Lipid Bilayers , Phospholipids , Chelating Agents , Lipid Bilayers/chemistry , Peptides , Phospholipids/chemistry , Phosphorylcholine
16.
Nat Commun ; 12(1): 6623, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799548

ABSTRACT

During injured tissue regeneration, the extracellular matrix plays a key role in controlling and coordinating various cellular events by binding and releasing secreted proteins in addition to promoting cell adhesion. Herein, we develop a cell-adhesive fiber-forming peptide that mimics the jigsaw-shaped hydrophobic surface in the dovetail-packing motif of glycophorin A as an artificial extracellular matrix for regenerative therapy. We show that the jigsaw-shaped self-assembling peptide forms several-micrometer-long supramolecular nanofibers through a helix-to-strand transition to afford a hydrogel under physiological conditions and disperses homogeneously in the hydrogel. The molecular- and macro-scale supramolecular properties of the jigsaw-shaped self-assembling peptide hydrogel allow efficient incorporation and sustained release of vascular endothelial growth factor, and demonstrate cell transplantation-free regenerative therapeutic effects in a subacute-chronic phase mouse stroke model. This research highlights a therapeutic strategy for injured tissue regeneration using the jigsaw-shaped self-assembling peptide supramolecular hydrogel.


Subject(s)
Brain Regeneration/physiology , Hydrogels/chemistry , Peptides/chemistry , Proteins/chemistry , Adhesives , Animals , Biomedical Engineering , Brain Injuries/diagnostic imaging , Cell Adhesion , Disease Models, Animal , Female , Green Fluorescent Proteins/chemistry , Hydrogels/therapeutic use , Hydrophobic and Hydrophilic Interactions , Mice , Mice, Inbred C57BL , Nanofibers , Nervous System , Peptides/therapeutic use , Vascular Endothelial Growth Factor A
17.
Acc Chem Res ; 54(19): 3700-3709, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34496564

ABSTRACT

Transmembrane proteins located within biological membranes play a crucial role in a variety of important cellular processes, such as energy conversion and signal transduction. Among them, ion channel proteins that can transport specific ions across the biological membranes are particularly important for achieving precise control over those processes. Strikingly, approximately 20% of currently approved drugs are targeted to ion channel proteins within membranes. Thus, synthetic molecules that can mimic the functions of natural ion channel proteins would possess great potential in the sensing and manipulation of biologically important processes, as well as in the purification of key industrial materials.Inspired by the sophisticated structures and functions of natural ion channel proteins, our research group developed a series of multiblock amphiphiles (MAs) composed of a repetitive sequence of flexible hydrophilic oligo(ethylene glycol) chains and rigid hydrophobic oligo(phenylene-ethynylene) units. These MAs can be effectively incorporated into the hydrophobic layer of lipid bilayer membranes and adopt folded conformations, with their hydrophobic units stacked in a face-to-face configuration. Moreover, the folded MAs can self-assemble within the membranes and form supramolecular nanopores that can transport ions across the membranes. In these studies, we focused on the structural flexibility of the MAs and decided to design new molecules able to respond to various external stimuli in order to control their transmembrane ion transport properties. For this purpose, we developed new MAs incorporating sterically bulky groups within their hydrophobic units and demonstrated that their transmembrane ion transport properties could be controlled via mechanical forces applied to the membranes. Moreover, we developed MAs incorporating phosphate ester groups that functioned as ligand-binding sites at the boundary between hydrophilic and hydrophobic units and found that these MAs exhibited transmembrane ion transport properties upon binding with aromatic amine ligands, even within the biological membranes of living cells. We further modified the hydrophobic units of the MAs with fluorine atoms and demonstrated their voltage-responsive transmembrane ion transport properties. These molecular design principles were extended to the development of a transmembrane anion transporter whose transport mechanism was studied by all-atom molecular dynamics simulations.This Account describes the basic principles of the molecular designs of MAs, the characterization of their self-assembled structures within a lipid bilayer, and their transmembrane ion transport properties, including their responsiveness to stimuli. Finally, we discuss future perspectives on the manipulation of biological processes based on the characteristic features of MAs.


Subject(s)
Membrane Proteins/chemistry , Alkynes/chemistry , Ethers/chemistry , Ethylene Glycol/chemistry , Hydrophobic and Hydrophilic Interactions , Macromolecular Substances/chemistry , Models, Molecular
18.
Chemistry ; 27(36): 9197, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34114266

ABSTRACT

Invited for the cover of this issue is the group of Takahiro Muraoka at Tokyo University of Agriculture and Technology and collaborators. The image depicts nanofiber formation of an amphiphilic peptide with a central alkylene chain that shows non-cell adhesive properties. Read the full text of the article at 10.1002/chem.202100739.


Subject(s)
Hydrogels , Nanofibers , Adhesives , Peptides
19.
Chemistry ; 27(36): 9295-9301, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33871881

ABSTRACT

Amphiphilic peptides bearing terminal alkyl tails form supramolecular nanofibers that are increasingly used as biomaterials with multiple functionalities. Insertion of alkylene chains in peptides can be designed as another type of amphiphilic peptide, yet the influence of the internal alkylene chains on self-assembly and biological properties remains poorly defined. Unlike the terminal alkyl tails, the internal alkylene chains can affect not only the hydrophobicity but also the flexibility and packing of the peptides. Herein, we demonstrate the supramolecular and biological effects of the central alkylene chain length inserted in a peptide. Insertion of the alkylene chain at the center of the peptide allowed for strengthened ß-sheet hydrogen bonds and modulation of the packing order, and consequently the amphiphilic peptide bearing C2 alkylene chain formed a hydrogel with the highest stiffness. Interestingly, the amphiphilic peptides bearing internal alkylene chains longer than C2 showed a diminished cell-adhesive property. This study offers a novel molecular design to tune mechanical and biological properties of peptide materials.


Subject(s)
Hydrogels , Nanofibers , Adhesives , Hydrophobic and Hydrophilic Interactions , Peptides
20.
Molecules ; 26(4)2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33562280

ABSTRACT

Oxidative protein folding is a biological process to obtain a native conformation of a protein through disulfide-bond formation between cysteine residues. In a cell, disulfide-catalysts such as protein disulfide isomerase promote the oxidative protein folding. Inspired by the active sites of the disulfide-catalysts, synthetic redox-active thiol compounds have been developed, which have shown significant promotion of the folding processes. In our previous study, coupling effects of a thiol group and guanidyl unit on the folding promotion were reported. Herein, we investigated the influences of a spacer between the thiol group and guanidyl unit. A conjugate between thiol and guanidyl units with a diethylene glycol spacer (GdnDEG-SH) showed lower folding promotion effect compared to the thiol-guanidyl conjugate without the spacer (GdnSH). Lower acidity and a more reductive property of the thiol group of GdnDEG-SH compared to those of GdnSH likely resulted in the reduced efficiency of the folding promotion. Thus, the spacer between the thiol and guanidyl groups is critical for the promotion of oxidative protein folding.


Subject(s)
Ethylene Glycol/chemistry , Oxidative Stress/drug effects , Protein Disulfide-Isomerases/chemistry , Sulfhydryl Compounds/chemistry , Catalysis , Cysteine/chemistry , Disulfides/chemistry , Ethylene Glycol/pharmacology , Glutathione/chemistry , Kinetics , Oxidation-Reduction/drug effects , Protein Folding/drug effects , Sulfhydryl Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...