Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Nanoscale ; 16(4): 1843-1852, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38168698

ABSTRACT

Spintronic devices have revolutionized the way we process or store information compared to dissipative charge-based electronics. Among various spin-based technologies, skyrmions - topologically protected nano-size spin textures - have emerged as the most promising alternative for future data processing. Here, we have proposed binary adder circuits - central to most digital logic circuits - based on skyrmions. Using micromagnetic simulations, we have demonstrated half-adder and full-adder logic functionalities by precisely driving the skyrmions through voltage-controlled magnetic anisotropy gradient, besides taking advantage of the physical effects such as the skyrmion Hall effect, skyrmion-skyrmion topological repulsion and skyrmion-edge repulsions. The proposed voltage-control-based method of driving the skyrmions is energy efficient compared to the electrical current-driven approach, and it also overcomes the issue of Joule heating. A reliable operation in a wide range of Dzyaloshinskii-Moriya interaction strengths, magnetic anisotropy gradient, and dimensional parameters has been shown, which offers robustness to the device design. The results pave the way for the skyrmion-based computational architecture, which is significant for next-generation non-volatile data processing.

2.
Sci Rep ; 13(1): 22290, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38097647

ABSTRACT

The broken time reversal symmetry states may result in the opening of a band gap in TlBiSe2 leading to several interesting phenomena which are potentially relevant for spintronic applications. In this work, the quantum interference and magnetic proximity effects have been studied in Ni80Fe20/p-TlBiSe2/p-Si (Magnetic/TI) heterostructure using physical vapor deposition technique. Raman analysis shows the symmetry breaking with the appearance of A21u mode. The electrical characteristics are investigated under dark and illumination conditions in the absence as well as in the presence of a magnetic field. The outcomes of the examined device reveal excellent photo response in both forward and reverse bias regions. Interestingly, under a magnetic field, the device shows a reduction in electrical conductivity at ambient conditions due to the crossover of weak localization and separation of weak antilocalization, which are experimentally confirmed by magnetoresistance measurement. Further, the photo response has also been assessed by the transient absorption spectroscopy through analysis of charge transfer and carrier relaxation mechanisms. Our results can be beneficial for quantum computation and further study of topological insulator/ferromagnet heterostructure and topological material based spintronic devices due to high spin orbit coupling along with dissipationless conduction channels at the surface states.

3.
Angew Chem Int Ed Engl ; 62(35): e202307458, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37363873

ABSTRACT

The injection of pure spin current into the non-magnetic layer plays a crucial role in transmitting, processing, and storing data information in the realm of spintronics. To understand broadband molecular spintronics, pyrene oligomer film (≈20 nm thickness) was prepared using an electrochemical method forming indium tin oxide (ITO) electrode/pyrene covalent interfaces. Permalloy (Ni80 Fe20 ) films with different nanoscale thicknesses were used as top contact over ITO/pyrene layers to estimate the spin pumping efficiency across the interfaces using broadband ferromagnetic resonance spectra. The spintronic devices are composed of permalloy/pyrene/ITO orthogonal configuration, showing remarkable spin pumping from permalloy to pyrene film. The large spin pumping is evident from the linewidth broadening of 5.4 mT at 9 GHz, which is direct proof of spin angular momentum transfer across the interface. A striking observation is made with the high spin-mixing conductance of ≈1.02×1018  m-2 , a value comparable to the conventional heavy metals. Large spin angular moment transfer was observed at the permalloy-pyrene interfaces, especially at the lower thickness of permalloy, indicating a strong spinterface effect. Pure spin current injection from ferromagnetic into electrochemically grown pyrene films ensures efficient broadband spin transport, which opens a new area in molecular broadband spintronics.

4.
Nanotechnology ; 34(22)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36827697

ABSTRACT

Magnetic skyrmions are topologically protected spin textures and they are suitable for future logic-in-memory applications for energy-efficient, high-speed information processing and computing technologies. In this work, we have demonstrated skyrmion-based 3 bit majority logic gate using micromagnetic simulations. The skyrmion motion is controlled by introducing agatethat works on voltage controlled magnetic anisotropy. Here, the inhomogeneous magnetic anisotropy behaves as a tunable potential barrier/well that modulates the skyrmion trajectory in the structure for the successful implementation of the majority logic gate. In addition, several other effects such as skyrmion-skyrmion topological repulsion, skyrmion-edge repulsion, spin-orbit torque and skyrmion Hall effect have been shown to govern the logic functionalities. We have systematically presented the robust logic operations by varying the current density, magnetic anisotropy, voltage-controlled gate dimension and geometrical parameters of the logic device. The skyrmion Hall angle is monitored to understand the trajectory and stability of the skyrmion as a function of time in the logic device. The results demonstrate a novel method to achieve majority logic by using voltage controlled magnetic anisotropy which further opens up a new route for skyrmion-based low-power and high-speed computing devices.

5.
Nanotechnology ; 34(13)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36584387

ABSTRACT

In this study, we introduce the area efficient low complex runtime reconfigurable architecture design methodology based on Skyrmion logic for universal logic gate (ULG) i.e. NOR/NAND implementation using micromagnetic simulations. We have modelled the two input 3D device structure using bilayer ferromagnet/heavy metal where the magnetic tunnel junctions inject and detect the input and output skyrmions by exploiting the input reversal mechanism. The implementation of NOR and NAND is performed using this same device where it is reconfigured runtime with enhanced tunability by the ON and OFF state of current passing through a non magnetic metallic gate respectively. This gate acts as a barrier for skyrmion motion (additional control mechanism) to realize the required Skyrmion logic output states. To the best of authors's knowledge the boolean optimizations and the mapping logic have been presented for the first time to demonstrate the functionalities of the NOR/NAND implementation. This proposed architecture design methodology of ULG leads to reduced device footprint with regard to the number of thin film structures proposed, low complexity in terms of fabrication and also providing runtime reconfigurability to reduce the number of physical designs to achieve all truth table entries (∼75% device footprint reduction). The proposed 3D ULG architecture design benefits from the miniaturization resulting in opening up a new perspective for magneto-logic devices.

6.
Nanoscale ; 13(47): 19985-19992, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34825693

ABSTRACT

Heavy metal-ferromagnet bilayer structures have attracted great research interest for charge-to-spin interconversion. In this work, we investigated the effect of the permalloy (Py) seed layer on the tantalum (Ta) polycrystalline phase and its spin Hall angle. Interestingly, for the same deposition rates the crystalline phase of Ta deposited on the Py seed layer strongly depends on the thickness of the seed layer. We observed a phase transition from α-Ta to (α + ß)-Ta while increasing the Py seed layer thickness. The observed phase transition is attributed to the strain at the interface between the Py and Ta layers. Ferromagnetic resonance-based spin pumping studies reveal that the spin-mixing conductance in the (α + ß)-Ta is relatively higher as compared to the α-Ta. Spin Hall angles of α-Ta and (α + ß)-Ta are obtained from the inverse spin Hall effect (ISHE) measurements. The spin Hall angle of (α + ß)-Ta is estimated to be θSH = -0.15 ± 0.009 which is relatively higher than that of the α-Ta. Our systematic results connecting the phase of Ta with the seed layer and its effect on the efficiency of spin to charge conversion might resolve ambiguities across various literature and open up new functionalities based on the growth process for emerging spintronic devices.

7.
Sci Rep ; 11(1): 8836, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33893346

ABSTRACT

Discovery of advanced soft-magnetic high entropy alloy (HEA) thin films are highly pursued to obtain unidentified functional materials. The figure of merit in current nanocrystalline HEA thin films relies in integration of a simple single-step electrochemical approach with a complex HEA system containing multiple elements with dissimilar crystal structures and large variation of melting points. A new family of Cobalt-Copper-Iron-Nickel-Zinc (Co-Cu-Fe-Ni-Zn) HEA thin films are prepared through pulse electrodeposition in aqueous medium, hosts nanocrystalline features in the range of ~ 5-20 nm having FCC and BCC dual phases. The fabricated Co-Cu-Fe-Ni-Zn HEA thin films exhibited high saturation magnetization value of ~ 82 emu/g, relatively low coercivity value of 19.5 Oe and remanent magnetization of 1.17%. Irrespective of the alloying of diamagnetic Zn and Cu with ferromagnetic Fe, Co, Ni elements, the HEA thin film has resulted in relatively high saturation magnetization which can provide useful insights for its potential unexplored applications.

8.
RSC Adv ; 11(56): 35567-35574, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-35493144

ABSTRACT

Pure spin current based devices have attracted great interest in recent days. Spin current injection into non-magnetic materials is essential for the design and development of such pure spin current based devices. In this context, organic semiconductors (OSCs) can be potential non-magnetic materials over widely explored heavy metals. This is due to the relatively low spin-orbit coupling of OSCs, which is essential to host the spin current with a large spin diffusion length and long spin-relaxation time. This research work demonstrates the harvesting of spin currents at the perylene diimide (PDI)/permalloy (Py) based OSC interface. The observed high linewidth broadening of 2.18 mT from the ferromagnetic resonance spectra indicates the presence of giant spin pumping from Py to PDI. The resultant spin-mixing conductance, 1.54 × 1018 m-2 quantifies the amount of spin current injected from Py to PDI, which is in a similar range to ferromagnet/heavy metals.

9.
ACS Nano ; 4(12): 7087-92, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21047066

ABSTRACT

The perpendicular magnetic field dependence of the longitudinal resistance in trilayer graphene at various temperatures has been systematically studied. For a fixed magnetic field, the trilayer graphene displays an intrinsic semiconductor behavior over the temperature range of 5-340 K. This is attributed to the parabolic band structure of trilayer graphene, where the Coulomb scattering is a strong function of temperature. The dependence of resistance on the magnetic field can be explained by the splitting of Landau levels (LLs). Our results reveal that the energy gap in the trilayer graphene is thermally activated and increases with √B.

SELECTION OF CITATIONS
SEARCH DETAIL