Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Radiol ; 97(1158): 1162-1168, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38648776

ABSTRACT

OBJECTIVES: A portable respiratory training system with a gyroscope sensor (gyroscope respiratory training system [GRTS]) was developed and the feasibility of respiratory training was evaluated. METHODS: Simulated respiratory waveforms from a respiratory motion phantom and actual respirator waveforms from volunteers were acquired using the GRTS and Respiratory Gating for Scanners system (RGSC). Respiratory training was evaluated by comparing the stability and reproducibility of respiratory waveforms from patients undergoing expiratory breath-hold radiation therapy, with and without the GRTS. The stability and reproducibility of respiratory waveforms were assessed by root mean square error and gold marker placement-based success rate of expiratory breath-hold, respectively. RESULTS: The absolute mean difference for sinusoidal waveforms between the GRTS and RGSC was 2.0%. Among volunteers, the mean percentages of errors within ±15% of the respiratory waveforms acquired by the GRTS and RGSC were 96.1% for free breathing and 88.2% for expiratory breath-hold. The mean root mean square error and success rate of expiratory breath-hold (standard deviation) with and without the GRTS were 0.65 (0.24) and 0.88 (0.89) cm and 91.0% (6.9) and 89.1% (11.6), respectively. CONCLUSIONS: Respiratory waveforms acquired by the GRTS exhibit good agreement with waveforms acquired by the RGSC. Respiratory training with the GRTS reduces inter-patient variability in respiratory waveforms, thereby improving the success of expiratory breath-hold radiation therapy. ADVANCES IN KNOWLEDGE: A respiratory training system with a gyroscope sensor is inexpensive and portable, making it ideal for respiratory training. This is the first report concerning clinical implementation of a respiratory training system.


Subject(s)
Feasibility Studies , Humans , Reproducibility of Results , Male , Adult , Phantoms, Imaging , Female , Breath Holding , Breathing Exercises/instrumentation , Breathing Exercises/methods , Middle Aged , Respiration , Equipment Design
2.
Rep Pract Oncol Radiother ; 27(5): 809-820, 2022.
Article in English | MEDLINE | ID: mdl-36523803

ABSTRACT

Background: We evaluated the setup error and dose absorption of an immobilization system with a shell and wooden baseplate (SW) for lung stereotactic body radiotherapy (SBRT). Materials and methods: Setup errors in 109 patients immobilized with an SW or BodyFix system (BF) were compared. Dose attenuation rates of materials for baseplates were measured with an ion-chamber. Ionization measurements were performed from 90° to 180° gantry angle in 10° increments, with the ball water equivalent phantom placed at the center of the wood and carbon baseplates whose effects on dose distribution were compared using an electron portal imaging device. Results: The ratio for the anterior-posterior, cranial-caudal, and right-left of the cases within 3-mm registered shifts in interfractional setup error were 90.9%, 89.2%, and 97.4% for the SW, and 93.2%, 91.6%, and 98.0% for the BF, respectively. For intrafractional setup error, 98.3%, 97.4%, and 99.1% for the SW and 96.6%, 95.8%, and 98.7% for the BF were within 3-mm registered shifts, respectively. In the center position, the average (minimum/maximum) dose attenuation rates from 90° to 180° for the wooden and carbon baseplates were 0.5 (0.1/2.8)% and 1.0 (-0.1/10.1)% with 6 MV, respectively. The gamma passing rates of 2%/2 mm for the wooden and carbon baseplates were 99.7% and 98.3% (p < 0.01). Conclusions: The immobilization system with an SW is effective for lung SBRT since it is comparable to the BF in setup accuracy. Moreover, the wooden baseplate had lower radiation attenuation rates and affected the dose distribution less than the carbon baseplate.

3.
Rep Pract Oncol Radiother ; 25(5): 703-708, 2020.
Article in English | MEDLINE | ID: mdl-32684857

ABSTRACT

BACKGROUND: We investigated the change of dose distributions in volumetric modulated arc therapy (VMAT) under baseline drift (BD) during breath holding. MATERIALS AND METHODS: Ten VMAT plans recalculated to a static field at a gantry angle of 0° were prepared for measurement with a 2D array device and five original VMAT plans were prepared for measurement with gafchromic films. These measurement approaches were driven by a waveform reproducing breath holding with BD. We considered breath holding times of 15 and 10 s, and BD at four speeds; specifically, BD0 (0 mm/s), BD0.2 (0.2 mm/s), BD0.3 (0.3 mm/s), and BD0.4 (0.4 mm/s). The BD was periodically reproduced from the isocenter along the craniocaudal direction and the shift during breath holding (ShiftBH) ranged 0-6 mm.The dose distribution of BD0.2, BD0.3 and BD0.4 were compared to that of BD0 using gamma analysis with the criterion of 2%/2 mm. RESULTS: The mean pass rates of each ShiftBH were 99.8% and 98.9% at 0 mm, 96.8% and 99.4% at 2 mm, 94.9% and 98.6% at 3 mm, 91.5% and 98.4% at 4 mm, 70.8% and 94.1% at 4.5 mm, and 55.0% and 83.6% at 6 mm for the array and film measurements, respectively. CONCLUSION: We found significant differences in ShiftBH above 4 mm (ρ < 0.05). Hence, it is recommended that breath holding time should be shortened for patients to preserve the reproducibility of dose distributions.

4.
J Med Phys ; 43(4): 230-235, 2018.
Article in English | MEDLINE | ID: mdl-30636848

ABSTRACT

PURPOSE: The aim of this study is to compare the interfractional setup reproducibility of two types of patient immobilization devices for prostate cancer receiving image-guided radiation therapy (IGRT). MATERIALS AND METHODS: The MOLDCARE (MC) involves hydraulic fixation, whereas the BlueBAG (BB) and Vac-Lock (VL) involve vacuum fixation. For 72 patients, each immobilization device was individually customized during computed tomography (CT) simulation. Before the treatment, bony registration was performed using orthogonal kV images and digitally reconstructed radiographs. The shift of the treatment couch was recorded as a benchmark in the first session. In subsequent sessions, the shifts from the benchmark were measured and analyzed. Soft-tissue registration was performed weekly by cone-beam CT and CT images, and the shifts were measured and analyzed. RESULTS: In the superior-inferior and left-right directions, there were nearly no changes in the overall mean among the immobilization devices. In the anterior-posterior (AP) direction, the overall mean for the MC, BB, and VL were 0.34 ± 1.33, -0.47 ± 1.27, and -1.82 ± 1.65 mm, respectively. The mean shifts along the AP direction were approximately 1 mm more in patients immobilized on the BB and 2.5 mm more in those on the VL, compared to those on the MC, after the twentieth treatment. No significant changes were observed among the patients immobilized on those devices, respectively, in soft-tissue registration. CONCLUSION: It can be concluded that the settling of the vacuum fixation was caused by air leakage in the latter-half treatment, and the immobilization device type has no effect on the treatment-position reproducibility in IGRT.

SELECTION OF CITATIONS
SEARCH DETAIL
...