Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
J Clin Invest ; 133(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38038136

ABSTRACT

Sarcoidosis is a disease of unknown etiology in which granulomas form throughout the body and is typically treated with glucocorticoids, but there are no approved steroid-sparing alternatives. Here, we investigated the mechanism of granuloma formation using single-cell RNA-Seq in sarcoidosis patients. We observed that the percentages of triggering receptor expressed on myeloid cells 2-positive (TREM2-positive) macrophages expressing angiotensin-converting enzyme (ACE) and lysozyme, diagnostic makers of sarcoidosis, were increased in cutaneous sarcoidosis granulomas. Macrophages in the sarcoidosis lesion were hypermetabolic, especially in the pentose phosphate pathway (PPP). Expression of the PPP enzymes, such as fructose-1,6-bisphosphatase 1 (FBP1), was elevated in both systemic granuloma lesions and serum of sarcoidosis patients. Granuloma formation was attenuated by the PPP inhibitors in in vitro giant cell and in vivo murine granuloma models. These results suggest that the PPP may be a promising target for developing therapeutics for sarcoidosis.


Subject(s)
Pentose Phosphate Pathway , Sarcoidosis , Humans , Animals , Mice , Sarcoidosis/diagnosis , Sarcoidosis/etiology , Sarcoidosis/pathology , Granuloma , Macrophages/pathology , Glucocorticoids
4.
Allergy ; 77(9): 2748-2759, 2022 09.
Article in English | MEDLINE | ID: mdl-35426135

ABSTRACT

BACKGROUND: The circadian rhythm controls multiple biological processes, including immune responses; however, its impact on cutaneous adaptive immune response remains unclear. METHODS: We used a well-established cutaneous type IV allergy model, contact hypersensitivity (CHS). We induced CHS using dinitrofluorobenzene (DNFB). Mice were sensitized and elicited with DNFB in the daytime or at night. RESULTS: In mice, a nocturnally active animal, we found that ear swelling increased when mice were sensitized at night compared with in the daytime. In addition, cell proliferation and cytokine production in the draining lymph nodes (LNs) were promoted when sensitized at night. We hypothesized that these differences were due to the oscillation of leukocyte distribution in the body through the circadian production of adrenergic hormones. Administration of a ß2-adrenergic receptor (ß2AR) agonist salbutamol in the daytime decreased the number of immune cells in blood and increased the number of immune cells in LNs. In contrast, a ß2AR antagonist ICI18551 administration at night increased the number of immune cells in blood and decreased the number of immune cells in LNs. Accordingly, the severity of CHS response was exacerbated by salbutamol administration in the daytime and attenuated by ICI18551 administration at night. CONCLUSION: Our study demonstrated that the magnitude of adaptive CHS response depends on the circadian rhythm and this knowledge may improve the management of allergic contact dermatitis (ACD) in humans.


Subject(s)
Circadian Rhythm , Dermatitis, Allergic Contact , Albuterol , Animals , Dinitrofluorobenzene , Humans , Mice , Mice, Inbred BALB C , Skin
5.
Trends Mol Med ; 28(5): 350-359, 2022 05.
Article in English | MEDLINE | ID: mdl-35337733

ABSTRACT

The skin barrier protects our body from external insults and water loss through a specialized layer, the stratum corneum. The stratum corneum, an accumulation of dead keratinocytes (corneocytes), comprises lipids and supporting cell bodies. We propose a framework of lipid-filled polymer sheet of corneocytes, a unique structure that achieves flexibility and robustness, updating the rigid image of the historical bricks-and-mortar model. The polymerization of polymer sheet (cornification) by cell death of keratinocytes (corneoptosis) is delicately and dynamically controlled by cytoplasmic calcium ion and pH. Understanding the structure and formation of the stratum corneum can lead to better treatments for skin diseases and a better understanding of the evolution of the stratum corneum.


Subject(s)
Epidermis , Polymers , Cell Differentiation , Epidermis/metabolism , Humans , Keratinocytes/metabolism , Polymers/metabolism , Skin
7.
J Invest Dermatol ; 142(3 Pt A): 571-582.e9, 2022 03.
Article in English | MEDLINE | ID: mdl-34560074

ABSTRACT

Surfactant-induced cumulative irritant contact dermatitis (ICD) is a common and clinically important skin disorder. CCL2 is known to mediate inflammation after tissue damage in various organs. Thus, we investigated whether and how CCL2 contributes to the development of murine cumulative ICD induced by a common surfactant, SDS. Wild-type mice treated topically with SDS for 6 consecutive days developed skin inflammation that recapitulated the features of human cumulative ICD, including barrier disruption, epidermal thickening, and neutrophil accumulation. CCL2 was upregulated in SDS-treated skin, and local CCL2 blockade attenuated SDS-induced ICD. SDS-induced ICD and neutrophil accumulation were also attenuated in mice deficient in CCR2, the receptor for CCL2. Neutrophil depletion alleviated SDS-induced ICD, suggesting that impaired neutrophil accumulation was responsible for the amelioration of ICD in CCR2-deficient mice. In RNA-sequencing analyses of SDS-treated skin, the expression levels of Il1b in Ccr2-deficient mice were highly downregulated compared with those in wild-type mice. Furthermore, the intradermal administration of IL-1ß in the SDS-treated skin of CCR2-deficient mice restored the local accumulation of neutrophils and the development of ICD. Collectively, our results suggest that CCL2‒CCR2 signaling in the skin critically promotes the development of SDS-induced ICD by inducing IL-1ß expression for neutrophil accumulation.


Subject(s)
Dermatitis, Irritant , Neutrophils , Animals , Chemokine CCL2 , Dermatitis, Irritant/metabolism , Inflammation/metabolism , Interleukin-1beta , Irritants/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/metabolism , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, Chemokine/metabolism , Skin/metabolism , Surface-Active Agents
8.
Nat Aging ; 2(7): 592-600, 2022 07.
Article in English | MEDLINE | ID: mdl-37117774

ABSTRACT

Stem cell loss causes tissue deterioration associated with aging. The accumulation of genomic and oxidative stress-induced DNA damage is an intrinsic cue for stem cell loss1,2; however, whether there is an external microenvironmental cue that triggers stem cell loss remains unclear. Here we report that the involution of skin vasculature causes dermal stiffening that augments the differentiation and hemidesmosome fragility of interfollicular epidermal stem cells (IFESCs) in aged mouse skin. Aging-related IFESC dysregulation occurs in plantar and tail skin, and is correlated with prolonged calcium influx, which is contributed by the mechanoresponsive ion channel Piezo1 (ref. 3). Epidermal deletion of Piezo1 ameliorated IFESC dysregulation in aged skin, whereas Piezo1 activation augmented IFESC differentiation and hemidesmosome fragility in young mice. The dermis stiffened with age, which was accompanied by dermal vasculature atrophy. Conversely, induction of the dermal vasculature softened the dermis and ameliorated IFESC dysregulation in aged skin. Single-cell RNA sequencing of dermal fibroblasts identified an aging-associated anti-angiogenetic secretory molecule, pentraxin 3 (ref. 4), which caused dermal sclerotization and IFESC dysregulation in aged skin. Our findings show that the vasculature softens the microenvironment for stem cell maintenance and provide a potential mechanobiology-based therapeutic strategy against skin disorders in aging.


Subject(s)
Epidermis , Skin , Mice , Animals , Epidermis/physiology , Cell Differentiation/genetics , Stem Cells , Atrophy/pathology , Ion Channels/genetics
9.
PLoS Genet ; 17(8): e1009686, 2021 08.
Article in English | MEDLINE | ID: mdl-34351912

ABSTRACT

Although long noncoding RNAs (lncRNAs) are transcripts that do not encode proteins by definition, some lncRNAs actually contain small open reading frames that are translated. TINCR (terminal differentiation-induced ncRNA) has been recognized as a lncRNA that contributes to keratinocyte differentiation. However, we here show that TINCR encodes a ubiquitin-like protein that is well conserved among species and whose expression was confirmed by the generation of mice harboring a FLAG epitope tag sequence in the endogenous open reading frame as well as by targeted proteomics. Forced expression of this protein promoted cell cycle progression in normal human epidermal keratinocytes, and mice lacking this protein manifested a delay in skin wound healing associated with attenuated cell cycle progression in keratinocytes. We termed this protein TINCR-encoded ubiquitin-like protein (TUBL), and our results reveal a role for TINCR in the regulation of keratinocyte proliferation and skin regeneration that is dependent on TUBL.


Subject(s)
Keratinocytes/cytology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Cell Cycle , Cell Differentiation , Cells, Cultured , Gene Expression Regulation , Gene Knock-In Techniques , Humans , Keratinocytes/metabolism , Mice , Open Reading Frames , Proteomics , Ubiquitins/genetics , Ubiquitins/metabolism , Wound Healing
10.
Sci Rep ; 9(1): 10644, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31337875

ABSTRACT

The geometric organization of collagen fibers in human reticular dermis and its relationship to that of elastic fibers remain unclear. The tight packing and complex intertwining of dermal collagen fibers hinder accurate analysis of fiber orientation. We hypothesized that combined multiphoton microscopy and biaxial extension could overcome this issue. Continuous observation of fresh dermal sheets under biaxial extension revealed that the geometry of the elastic fiber network is maintained during expansion. Full-thickness human thigh skin samples were biaxially extended and cleared to visualize the entire reticular dermis. Throughout the dermis, collagen fibers straightened with increased inter-fiber spaces, making them more clearly identifiable after extension. The distribution of collagen fibers was evaluated with compilation of local orientation data. Two or three modes were confirmed in all superficial reticular layer samples. A high degree of local similarities in the direction of collagen and elastic fibers was observed. More than 80% of fibers had directional differences of ≤15°, regardless of layer. Understanding the geometric organization of fibers in the reticular dermis improves the understanding of mechanisms underlying the pliability of human skin. Combined multiphoton imaging and biaxial extension provides a research tool for studying the fibrous microarchitecture of the skin.


Subject(s)
Collagen/analysis , Dermis/diagnostic imaging , Elastic Tissue/diagnostic imaging , Microscopy, Fluorescence, Multiphoton/methods , Reticulin/analysis , Adult , Aged , Dermis/chemistry , Elastic Tissue/chemistry , Elastin/analysis , Female , Fibrillins/analysis , Fourier Analysis , Healthy Volunteers , Humans , Ligaments , Male , Microfibrils , Middle Aged , Tissue Donors
13.
Sci Rep ; 8(1): 6610, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29700333

ABSTRACT

Epidermal keratinocytes achieve sequential differentiation from basal to granular layers, and undergo a specific programmed cell death, cornification, to form an indispensable barrier of the body. Although elevation of the cytoplasmic calcium ion concentration ([Ca2+]i) is one of the factors predicted to regulate cornification, the dynamics of [Ca2+]i in epidermal keratinocytes is largely unknown. Here using intravital imaging, we captured the dynamics of [Ca2+]i in mouse skin. [Ca2+]i was elevated in basal cells on the second time scale in three spatiotemporally distinct patterns. The transient elevation of [Ca2+]i also occurred at the most apical granular layer at a single cell level, and lasted for approximately 40 min. The transient elevation of [Ca2+]i at the granular layer was followed by cornification, which was completed within 10 min. This study demonstrates the tightly regulated elevation of [Ca2+]i preceding the cornification of epidermal keratinocytes, providing possible clues to the mechanisms of cornification.


Subject(s)
Calcium/metabolism , Cell Differentiation , Epidermal Cells/cytology , Epidermal Cells/metabolism , Ions/metabolism , Keratinocytes/cytology , Keratinocytes/metabolism , Animals , Cell Shape , Cells, Cultured , Cytoplasm/metabolism , Fluorescent Antibody Technique , Gene Expression , Genes, Reporter , Mice , Single-Cell Analysis
14.
J Exp Med ; 212(11): 1921-30, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26438363

ABSTRACT

Resolvin E1 (RvE1) is a lipid mediator derived from ω3 polyunsaturated fatty acids that exerts potent antiinflammatory roles in several murine models. The antiinflammatory mechanism of RvE1 in acquired immune responses has been attributed to attenuation of cytokine production by dendritic cells (DCs). In this study, we newly investigated the effect of RvE1 on DC motility using two-photon microscopy in a contact hypersensitivity (CHS) model and found that RvE1 impaired DC motility in the skin. In addition, RvE1 attenuated T cell priming in the draining lymph nodes and effector T cell activation in the skin, which led to the reduced skin inflammation in CHS. In contrast, leukotriene B4 (LTB4) induced actin filament reorganization in DCs and increased DC motility by activating Cdc42 and Rac1 via BLT1, which was abrogated by RvE1. Collectively, our results suggest that RvE1 attenuates cutaneous acquired immune responses by inhibiting cutaneous DC motility, possibly through LTB4-BLT1 signaling blockade.


Subject(s)
Cell Movement/drug effects , Dendritic Cells/drug effects , Dermatitis, Contact/drug therapy , Eicosapentaenoic Acid/analogs & derivatives , Skin/immunology , Actins/chemistry , Animals , Cells, Cultured , Dendritic Cells/physiology , Eicosapentaenoic Acid/pharmacology , Female , Interferon-gamma/biosynthesis , Leukotriene B4/physiology , Mice , Mice, Inbred C57BL , Receptors, Leukotriene B4/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...