Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
Nat Metab ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720117

ABSTRACT

Isolated complex I (CI) deficiencies are a major cause of primary mitochondrial disease. A substantial proportion of CI deficiencies are believed to arise from defects in CI assembly factors (CIAFs) that are not part of the CI holoenzyme. The biochemistry of these CIAFs is poorly defined, making their role in CI assembly unclear, and confounding interpretation of potential disease-causing genetic variants. To address these challenges, we devised a deep mutational scanning approach to systematically assess the function of thousands of NDUFAF6 genetic variants. Guided by these data, biochemical analyses and cross-linking mass spectrometry, we discovered that the CIAF NDUFAF6 facilitates incorporation of NDUFS8 into CI and reveal that NDUFS8 overexpression rectifies NDUFAF6 deficiency. Our data further provide experimental support of pathogenicity for seven novel NDUFAF6 variants associated with human pathology and introduce functional evidence for over 5,000 additional variants. Overall, our work defines the molecular function of NDUFAF6 and provides a clinical resource for aiding diagnosis of NDUFAF6-related diseases.

4.
Brain Commun ; 6(3): fcae160, 2024.
Article in English | MEDLINE | ID: mdl-38756539

ABSTRACT

Autosomal recessive pathogenetic variants in the DGUOK gene cause deficiency of deoxyguanosine kinase activity and mitochondrial deoxynucleotides pool imbalance, consequently, leading to quantitative and/or qualitative impairment of mitochondrial DNA synthesis. Typically, patients present early-onset liver failure with or without neurological involvement and a clinical course rapidly progressing to death. This is an international multicentre study aiming to provide a retrospective natural history of deoxyguanosine kinase deficient patients. A systematic literature review from January 2001 to June 2023 was conducted. Physicians of research centres or clinicians all around the world caring for previously reported patients were contacted to provide followup information or additional clinical, biochemical, histological/histochemical, and molecular genetics data for unreported cases with a confirmed molecular diagnosis of deoxyguanosine kinase deficiency. A cohort of 202 genetically confirmed patients, 36 unreported, and 166 from a systematic literature review, were analyzed. Patients had a neonatal onset (≤ 1 month) in 55.7% of cases, infantile (>1 month and ≤ 1 year) in 32.3%, pediatric (>1 year and ≤18 years) in 2.5% and adult (>18 years) in 9.5%. Kaplan-Meier analysis showed statistically different survival rates (P < 0.0001) among the four age groups with the highest mortality for neonatal onset. Based on the clinical phenotype, we defined four different clinical subtypes: hepatocerebral (58.8%), isolated hepatopathy (21.9%), hepatomyoencephalopathy (9.6%), and isolated myopathy (9.6%). Muscle involvement was predominant in adult-onset cases whereas liver dysfunction causes morbidity and mortality in early-onset patients with a median survival of less than 1 year. No genotype-phenotype correlation was identified. Liver transplant significantly modified the survival rate in 26 treated patients when compared with untreated. Only six patients had additional mild neurological signs after liver transplant. In conclusion, deoxyguanosine kinase deficiency is a disease spectrum with a prevalent liver and brain tissue specificity in neonatal and infantile-onset patients and muscle tissue specificity in adult-onset cases. Our study provides clinical, molecular genetics and biochemical data for early diagnosis, clinical trial planning and immediate intervention with liver transplant and/or nucleoside supplementation.

5.
Genet Med ; : 101165, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762772

ABSTRACT

PURPOSE: Galactose mutarotase (GALM) deficiency was first reported in 2019 as the fourth type of galactosemia. This study aimed to investigate the clinical and genotypic spectra of GALM deficiency. METHODS: This was a questionnaire-based retrospective survey conducted in Japan between February 2022 and March 2023. RESULTS: We identified 40 patients with GALM deficiency in Japan (estimated prevalence: 1:181,835). Four of 38 patients (10.5%) developed cataracts, which resolved with lactose restriction in three out of four patients. Transient transaminitis was the most common symptom (23.1%). All the patients followed lactose restriction; discontinuation of the restriction after infancy did not cause any complications. Moreover, none of the participants experienced long-term complications. Two variants, GALM NM_138801.3: c.294del and c.424G>A, accounted for 72.5% of the identified pathogenic variants. The patients showed moderately elevated blood galactose levels with lactose intake; however, the elevation was lower than that observed in galactokinase deficiency. CONCLUSIONS: GALM deficiency is characterized by a similar but milder phenotype and lower blood galactose elevation than in galactokinase deficiency. Diagnosis and initiation of lactose restriction in early infancy should be essential for prevention of cataracts, especially in cases of irreversible opacity.

6.
Mitochondrion ; 76: 101858, 2024 May.
Article in English | MEDLINE | ID: mdl-38437941

ABSTRACT

Mitochondrial diseases are caused by nuclear, or mitochondrial DNA (mtDNA) variants and related co-factors. Here, we report a novel m.10197G > C variant in MT-ND3 in a patient, and two other patients with m.10191 T > C. MT-ND3 variants are known to cause Leigh syndrome or mitochondrial complex I deficiency. We performed the functional analyses of the novel m.10197G > C variant that significantly lowered MT-ND3 protein levels, causing complex I assembly and activity deficiency, and reduction of ATP synthesis. We adapted a previously described re-engineering technique of delivering mitochondrial genes into mitochondria through codon optimization for nuclear expression and translation by cytoplasmic ribosomes to rescue defects arising from the MT-ND3 variants. We constructed mitochondrial targeting sequences along with the codon-optimized MT-ND3 and imported them into the mitochondria. To achieve the goal, we imported codon-optimized MT-ND3 into mitochondria in three patients with m.10197G > C and m.10191 T > C missense variants in the MT-ND3. Nuclear expression of the MT-ND3 gene partially restored protein levels, complex I deficiency, and significant improvement of ATP production indicating a functional rescue of the mutant phenotype. The codon-optimized nuclear expression of mitochondrial protein and import inside the mitochondria can supplement the requirements for ATP in energy-deficient mitochondrial disease patients.


Subject(s)
Electron Transport Complex I , Mitochondria , Mitochondrial Diseases , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex I/deficiency , Male , Female , Leigh Disease/genetics , Leigh Disease/metabolism , Mutation, Missense , Adenosine Triphosphate/metabolism
7.
J Neurol Sci ; 457: 122867, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38199023

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sometimes triggers acute encephalopathy as a serious neurological complication in children. We previously reported the clinico-radiological findings of SARS-CoV-2-associated encephalopathy. The advent of the SARS-CoV-2 omicron variant led to a marked increase in pediatric patients with coronavirus disease 2019 (COVID-19); however, epidemiological changes with acute encephalopathy according to the emergence of SARS-CoV-2 have not yet been documented. Therefore, the present study investigated epidemiological differences in SARS-CoV-2-associated encephalopathy during the BA.1/BA.2 and BA.5 predominant periods and also between SARS-CoV-2-associated and non-SARS-CoV-2-associated encephalopathy. METHODS: We conducted a nationwide survey of SARS-CoV-2-associated encephalopathy in Japanese children between June and November 2022. We compared the present results during the BA.5 predominant period and previous findings during the BA.1/BA.2 predominant period. We also compared the clinico-radiological syndromes of encephalopathy between SARS-CoV-2-associated and non-SARS-CoV-2-associated encephalopathy. RESULTS: Although many patients with SARS-CoV-2-associated encephalopathy in the BA.5 predominant period had seizures as their initial symptoms, no significant differences were observed in the clinical features. Patients with SARS-CoV-2-associated encephalopathy had worse outcomes than those with non-SARS-CoV-2-associated encephalopathy (p-value = 0.003). Among 103 patients with SARS-CoV-2-associated encephalopathy, 14 (13.6%) had severe types of acute encephalopathy, namely, encephalopathy with acute fulminant cerebral edema (AFCE) and hemorrhagic shock and encephalopathy syndrome (HSES). Also, 28 (27.2%) patients with SARS-CoV-2-associated encephalopathy had poor outcome: severe neurological sequelae or death. Ninety-five patients (92.2%) were not vaccinated against SARS-CoV-2. CONCLUSIONS: In SARS-CoV-2-associated encephalopathy, high percentages of AFCE and HSES can result in poor outcomes.


Subject(s)
Blood Coagulation Disorders , Brain Diseases , COVID-19 , Shock, Hemorrhagic , Humans , Child , SARS-CoV-2 , COVID-19/complications , COVID-19/epidemiology , Brain Diseases/diagnostic imaging , Brain Diseases/epidemiology , Brain Diseases/etiology , Epidemiologic Studies
8.
Pediatr Transplant ; 28(1): e14659, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38012111

ABSTRACT

BACKGROUND: POLG is one of several nuclear genes associated with mitochondrial DNA maintenance defects and is a group of diseases caused by mitochondrial DNA deficiency that results in impaired adenosine triphosphate production and organ dysfunction. Myocerebrohepatopathy spectrum (MCHS) is the most severe and earliest presentation of POLG mutations, and liver transplantation (LT) for MCHS has never been reported. CASE PRESENTATION: The patient was a 3-month-old boy with acute liver failure and no neurological manifestations (e.g., seizures). We performed a living donor LT using a left lateral segment graft from his father. The postoperative course was uneventful. Subsequently, a homozygous POLG mutation (c.2890C>T, p. R964C) was identified by multigene analysis of neonatal/infantile intrahepatic cholestasis. Moreover, respiratory chain complex I, II, and III enzyme activities and the ratio of mtDNA to nuclear DNA in the liver were reduced. Therefore, we considered that these clinical manifestations and examination findings met the definition for MCHS. During meticulous follow-up, the patient had shown satisfactory physical growth and mental development until the time of writing this report. CONCLUSION: We presumed that the absence of remarkable neurologic manifestations prior to LT in patients with MCHS is a good indication for LT and contributes to a better prognosis in the present case.


Subject(s)
Liver Failure, Acute , Liver Transplantation , Male , Humans , Infant, Newborn , Infant , DNA-Directed DNA Polymerase/genetics , DNA Polymerase gamma/genetics , Living Donors , Mutation , DNA, Mitochondrial/genetics
9.
Sci Rep ; 13(1): 22005, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38086984

ABSTRACT

MRPS23 is a nuclear gene encoding a mitochondrial ribosomal protein. A patient with a mitochondrial disorder was found to carry a variant in MRPS23. More cases are necessary to establish MRPS23 as a mitochondrial disease gene. Of 5134 exomes performed in our center, we identified five independent patients who had similar clinical manifestations and were homozygous for the same germline variant c.119C>T; p.P40L in MRPS23. Detailed clinical findings, mitochondrial enzyme activity assays from cultured skin fibroblasts, PCR-Sanger-sequencing, and variant age estimation were performed. Their available family members were also studied. Eight members homozygous for the MRPS23 p.P40L were identified. All were from Hmong hilltribe. Seven presented with alteration of consciousness and recurrent vomiting, while the eighth who was a younger brother of a proband was found pre-symptomatically. Patients showed delayed growth and development, hearing impairment, hypoglycemia, lactic acidosis, and liver dysfunction. In vitro assays of cultured fibroblasts showed combined respiratory chain complex deficiency with low activities of complexes I and IV. PCR-Sanger-sequencing confirmed the variant, which was estimated to have occurred 1550 years ago. These results establish the MRPS23-associated mitochondrial disorder inherited in an autosomal recessive pattern and provide insight into its clinical and metabolic features.


Subject(s)
Acidosis, Lactic , Mitochondrial Diseases , Male , Humans , Mitochondrial Diseases/genetics , Mitochondria/genetics , Mitochondria/metabolism , Ribosomal Proteins/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Acidosis, Lactic/genetics
10.
Mol Genet Metab ; 140(1-2): 107703, 2023.
Article in English | MEDLINE | ID: mdl-37802748

ABSTRACT

OBJECTIVE: To examine whether it is possible to screen for bile acid synthesis disorders (BASDs) including peroxisome biogenesis disorder 1a (PBD1A) and Niemann-Pick type C1 (NPC1) at the time of newborn mass screening by measuring the intermediary metabolites of bile acid (BA) synthesis. METHODS: Patients with 3ß-hydroxy-ΔSuchy et al. (2021)5-C27-steroid dehydrogenase/isomerase (HSD3B7) deficiency (n = 2), 3-oxo-ΔPandak and Kakiyama (n.d.)4-steroid 5ß-reductase (SRD5B1) deficiency (n = 1), oxysterol 7α-hydroxylase (CYP7B1) deficiency (n = 1), PBD1A (n = 1), and NPC1 (n = 2) with available dried blood spot (DBS) samples collected in the neonatal period were included. DBSs from healthy neonates at 4 days of age (n = 1055) were also collected for the control. Disease specific BAs were measured by newly optimized liquid chromatography-tandem mass spectrometry with short run cycle (5-min/run). The results were validated by comparing with those obtained by the conventional condition with longer run cycle (76-min/run). RESULTS: In healthy specimens, taurocholic acid and cholic acid were the two major BAs which constituted approximately 80% in the measured BAs. The disease marker BAs presented <10%. In BASDs, the following BAs were determined for the disease specific markers: Glyco/tauro 3ß,7α,12α-trihydroxy-5-cholenoic acid 3-sulfate for HSD3B7 deficiency (>70%); glyco/tauro 7α,12α-dihydroxy-3-oxo-4-cholenoic acid for SRD5B1 deficiency (54%); tauro 3ß-hydroxy-5-cholenoic acid 3-sulfate for CYP7B1 deficiency (94%); 3α,7α,12α-trihydroxy-5ß-cholestanoic acid for PBD1A (78%); and tauro 3ß,7ß-dihydroxy-5-cholenoic acid 3-sulfate for NPC1 (26%). *The % in the parenthesis indicates the portion found in the patient's specimen. CONCLUSIONS: Early postnatal screening for BASDs, PBD1A and NPC1 is feasible with the described DBS-based method by measuring disease specific BAs. The present method is a quick and affordable test for screening for these inherited diseases.


Subject(s)
Liver Diseases , Zellweger Syndrome , Infant, Newborn , Humans , Bile Acids and Salts , Neonatal Screening , Steroids , Sulfates
11.
J Inherit Metab Dis ; 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37681292

ABSTRACT

Citrin deficiency is an autosomal recessive disorder caused by a defect of citrin resulting from mutations in the SLC25A13 gene. Intrahepatic cholestasis and various metabolic abnormalities, including hypoglycemia, galactosemia, citrullinemia, and hyperammonemia may be present in neonates or infants in the "neonatal intrahepatic cholestasis caused by citrin deficiency" (NICCD) form of the disease. Because at present, newborn screening (NBS) for citrin deficiency using citrulline levels in dried blood spots (DBS) can only detect some of the patients, we tried to develop a new evaluation system to more reliably detect newborns with citrin deficiency utilizing parameters already in place in present NBS methods. To achieve this goal, we re-analyzed NBS profiles of amino acids and acylcarnitines in 96 NICCD patients, who were diagnosed through selective screening or positive family history. Hereby, we identified the combined evaluation of arginine (Arg), citrulline (Cit), isoleucine+leucine (Ile + Leu), tyrosine (Tyr), free carnitine (C0) / glutarylcarnitine (C5-DC) ratio in DBS as potentially sensitive to diagnose citrin deficiency in pre-symptomatic newborns. In particular, a scoring system using threshold levels for Arg (≥9 µmol/L), Cit (≥ 39 µmol/L), Ile + Leu (≥ 99 µmol/L), Tyr (≥ 96 µmol/L) and C0/C5-DC ratio (≥327) was significantly effective to detect newborns who later developed NICCD, and could thus be implemented in existing NBS programs at no extra analytical costs whenever citrin deficiency is considered to become a novel target disease.

12.
J Clin Med ; 12(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37297992

ABSTRACT

Acute encephalopathy is a critical medical condition that typically affects previously healthy children and young adults and often results in death or severe neurological sequelae. Inherited metabolic diseases that can cause acute encephalopathy include urea cycle disorders, amino acid metabolism disorders, organic acid metabolism disorders, fatty acid metabolism disorders, mutations in the thiamine-transporter gene, and mitochondrial diseases. Although each inherited metabolic disease is rare, its overall incidence is reported as 1 in 800-2500 patients. This narrative review presents the common inherited metabolic diseases that cause acute encephalopathy. Since diagnosing inherited metabolic diseases requires specific testing, early metabolic/metanolic screening tests are required when an inherited metabolic disease is suspected. We also describe the symptoms and history associated with suspected inherited metabolic diseases, the various tests that should be conducted in case of suspicion, and treatment according to the disease group. Recent advancements made in the understanding of some of the inherited metabolic diseases that cause acute encephalopathy are also highlighted. Acute encephalopathy due to inherited metabolic diseases can have numerous different causes, and recognition of the possibility of an inherited metabolic disease as early as possible, obtaining appropriate specimens, and proceeding with testing and treatment in parallel are crucial in the management of these diseases.

14.
J Hum Genet ; 68(9): 649-652, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37246162

ABSTRACT

Approximately 80% of rare diseases have a genetic cause, and an accurate genetic diagnosis is necessary for disease management, prognosis prediction, and genetic counseling. Whole-exome sequencing (WES) is a cost-effective approach for exploring the genetic cause, but several cases often remain undiagnosed. We combined whole genome sequencing (WGS) and RNA sequencing (RNA-seq) to identify the pathogenic variants in an unsolved case using WES. RNA-seq revealed aberrant exon 4 and exon 6 splicing of ITPA. WGS showed a previously unreported splicing donor variant, c.263+1G>A, and a novel heterozygous deletion, including exon 6. Detailed examination of the breakpoint indicated the deletion caused by recombination between Alu elements in different introns. The proband was found to have developmental and epileptic encephalopathies caused by variants in the ITPA gene. The combination of WGS and RNA-seq may be effective in diagnosing conditions in proband who could not be diagnosed using WES.


Subject(s)
Family , Pyrophosphatases , Humans , Exome Sequencing , Whole Genome Sequencing , Exons , Sequence Analysis, RNA
16.
J Med Genet ; 60(10): 1006-1015, 2023 10.
Article in English | MEDLINE | ID: mdl-37055166

ABSTRACT

BACKGROUND: Enoyl-CoA hydratase short-chain 1 (ECHS1) is an enzyme involved in the metabolism of branched chain amino acids and fatty acids. Mutations in the ECHS1 gene lead to mitochondrial short-chain enoyl-CoA hydratase 1 deficiency, resulting in the accumulation of intermediates of valine. This is one of the most common causative genes in mitochondrial diseases. While genetic analysis studies have diagnosed numerous cases with ECHS1 variants, the increasing number of variants of uncertain significance (VUS) in genetic diagnosis is a major problem. METHODS: Here, we constructed an assay system to verify VUS function for ECHS1 gene. A high-throughput assay using ECHS1 knockout cells was performed to index these phenotypes by expressing cDNAs containing VUS. In parallel with the VUS validation system, a genetic analysis of samples from patients with mitochondrial disease was performed. The effect on gene expression in cases was verified by RNA-seq and proteome analysis. RESULTS: The functional validation of VUS identified novel variants causing loss of ECHS1 function. The VUS validation system also revealed the effect of the VUS in the compound heterozygous state and provided a new methodology for variant interpretation. Moreover, we performed multiomics analysis and identified a synonymous substitution p.P163= that results in splicing abnormality. The multiomics analysis complemented the diagnosis of some cases that could not be diagnosed by the VUS validation system. CONCLUSIONS: In summary, this study uncovered new ECHS1 cases based on VUS validation and omics analysis; these analyses are applicable to the functional evaluation of other genes associated with mitochondrial disease.


Subject(s)
Mitochondrial Diseases , Humans , Phenotype , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mutation/genetics , Enoyl-CoA Hydratase/genetics , Enoyl-CoA Hydratase/metabolism , Genetic Testing
17.
Heliyon ; 9(4): e14923, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37082626

ABSTRACT

The m.3243A > G mutation in the mitochondrially encoded tRNA leucine 1 (MT-TL1) gene is known to cause mitochondrial nephropathy. However, its long-term effects of the m.3243A > G mutation on renal histopathology or heteroplasmy rates remain unknown. Here we present the case of a female patient who underwent renal biopsy at 34 years of age to investigate the reason for a low estimated glomerular filtration rate (eGFR) of 47.9 mL/min/1.73 m2. Light microscopy revealed nephrosclerosis with granular swollen epithelial cells (GSECs) in the renal tubules. Genetic testing revealed the m.3243A > G mutation in the MT-TL1 gene. Over a follow-up period of 8 years, the eGFR declined at a rate of 1.50 mL/min/1.73 m2/year. A second renal biopsy was performed at the age of 42 years; the patient's glomerular sclerosis rate had increased from 45.5% to 63.2%, and the frequency of GSECs in the collecting ducts had increased from 5.8% to 20.8%. Furthermore, the heteroplasmy rate in blood cells and urinary sediment cells increased from 9% to 20% and 20% to 53%, respectively. Taurine therapy was initiated just after the second kidney biopsy. To date, after approximately 3 years of taurine administration, the rate of eGFR decline has markedly decreased to 0.26 mL/min/1.73 m2/year. This experience suggests that an increased heteroplasmy rate may be associated with the progression of mitochondrial nephropathy caused by MT-TL1 mutation. Furthermore, our case is the first to suggest the effectiveness of taurine for mitochondrial nephropathy caused by the m.3243A > G mutation in the MT-TL1 gene.

18.
Mol Genet Metab Rep ; 35: 100966, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36967720

ABSTRACT

The identification of the m.12207G > A variant in MT-TS2, (NC_012920.1:m.12207G > A) was first reported in 2006. The affected individual presented with developmental delay, feeding difficulty, proximal muscle weakness, and lesions within her basal ganglia, with heteroplasmy levels of 92% in muscle and no evidence of maternal inheritance. Herein, we report a case involving a 16-year-old boy with the same pathogenic variation and different phenotype, including sensorineural deafness, epilepsy, and intellectual disability, without diabetes mellitus (DM). His mother and maternal grandmother had similar but milder symptoms with DM. Heteroplasmy levels of the proband in blood, saliva, and urinary sediments were 31.3%, 52.6%, and 73.9%, respectively, while those of his mother were 13.8%, 22.1%, and 29.4%, respectively. The differences in the symptoms might be explained by the different levels of heteroplasmy. To our knowledge, this is the first familial report of the m.12207G > A variant in MT-TS2 that causes DM. The present case showed milder neurological symptoms than did the former report, and suggests the presence of a good phenotype-genotype correlation within this family.

19.
Front Neurosci ; 17: 1085082, 2023.
Article in English | MEDLINE | ID: mdl-36922927

ABSTRACT

Background and objectives: To clarify whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection cause acute encephalopathy in children and which are the most common syndromes that cause them and what are the outcomes. Methods: A nationwide web-based survey among all members of the Japanese Society of Child Neurology to identify pediatric patients aged < 18 years who developed acute encephalopathy in Japan between 1 January 2020 and 31 May 2022 associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection confirmed by polymerase chain reaction or antigen tests using pharyngeal swabs. Acute encephalopathy was defined as acute onset of impaired consciousness lasting > 24 h or an altered mental state; neurological symptoms arising within 2 weeks of onset of COVID-19 or multisystem inflammatory syndrome in children (MIS-C)/pediatric inflammatory multisystem syndrome (PIMS); evidence of SARS-CoV-2 infection; and reasonable exclusion of other diseases. Patients were divided into the known clinico-radiological acute encephalopathy syndrome group and unexplained or unclassifiable acute encephalopathy group. Outcomes were assessed by pediatric cerebral performance category (PCPC) score at hospital discharge. Results: Of the 3,802 society members, 217 representing institutions responded, and 39 patients with suspected acute encephalopathy were reported, of which 31 met inclusion criteria. Of these patients, 14 were diagnosed with known clinico-radiological acute encephalopathy syndromes, with acute encephalopathy with biphasic seizures and late reduced diffusion (five patients) being the most common. Five developed acute encephalopathy associated with MIS-C/PIMS. Among 31 patients, 9 (29.0%) had severe sequelae or died (PCPC ≥ 4). Two of three patients with encephalopathy with acute fulminant cerebral edema and two with hemorrhagic shock and encephalopathy syndrome died. The PCPC scores were higher in the known clinico-radiological acute encephalopathy syndrome group than in the unexplained or unclassifiable acute encephalopathy group (P < 0.01). Discussion: Acute encephalopathy related to SARS-CoV-2 infection was demonstrated to be more severe than that caused by other viruses in Japan. Acute encephalopathy syndromes characterized by specific neuroradiological findings was associated with poor clinical outcomes.

20.
Mol Genet Metab Rep ; 35: 100963, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36941957

ABSTRACT

NADH dehydrogenase 5 (ND5) is one of 44 subunits composed of Complex I in mitochondrial respiratory chain. Therefore, a mitochondrially encoded ND5 (MT-ND5) gene mutation causes mitochondrial oxidative phosphorylation (OXPHOS) disorder, resulting in the development of mitochondrial diseases. Focal segmental glomerulosclerosis (FSGS) which had podocytes filled with abnormal mitochondria is induced by mitochondrial diseases. An MT-ND5 mutation also causes FSGS. We herein report a Japanese woman who was found to have proteinuria and renal dysfunction in an annual health check-up at 29 years old. Because her proteinuria and renal dysfunction were persistent, she had a kidney biopsy at 33 years of age. The renal histology showed FSGS with podocytes filled with abnormal mitochondria. The podocytes also had foot process effacement and cytoplasmic vacuolization. In addition, the renal pathological findings showed granular swollen epithelial cells (GSECs) in tubular cells, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells (AiDIVs), and red-coloured podocytes (ReCPos) by acidic dye. A genetic analysis using peripheral mononuclear blood cells and urine sediment cells detected the m.13513 G > A variant in the MT-ND5 gene. Therefore, this patient was diagnosed with FSGS due to an MT-ND5 gene mutation. Although this is not the first case report to show that an MT-ND5 gene mutation causes FSGS, this is the first to demonstrate podocyte injuries accompanied with accumulation of abnormal mitochondria in the cytoplasm.

SELECTION OF CITATIONS
SEARCH DETAIL
...