Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 51(4): 1895-1913, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36688322

ABSTRACT

RNA binding proteins (RBPs) often engage multiple RNA binding domains (RBDs) to increase target specificity and affinity. However, the complexity of target recognition of multiple RBDs remains largely unexplored. Here we use Upstream of N-Ras (Unr), a multidomain RBP, to demonstrate how multiple RBDs orchestrate target specificity. A crystal structure of the three C-terminal RNA binding cold-shock domains (CSD) of Unr bound to a poly(A) sequence exemplifies how recognition goes beyond the classical ππ-stacking in CSDs. Further structural studies reveal several interaction surfaces between the N-terminal and C-terminal part of Unr with the poly(A)-binding protein (pAbp). All interactions are validated by mutational analyses and the high-resolution structures presented here will guide further studies to understand how both proteins act together in cellular processes.


Subject(s)
Poly(A)-Binding Proteins , RNA , Cold-Shock Response , DNA-Binding Proteins/genetics , Poly A/metabolism , Poly(A)-Binding Proteins/metabolism , Protein Binding , RNA/chemistry
2.
Sci Adv ; 8(16): eabn5725, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35442737

ABSTRACT

Preribosomal RNA is selectively transcribed by RNA polymerase (Pol) I in eukaryotes. The yeast transcription factor upstream activating factor (UAF) represses Pol II transcription and mediates Pol I preinitiation complex (PIC) formation at the 35S ribosomal RNA gene. To visualize the molecular intermediates toward PIC formation, we determined the structure of UAF in complex with native promoter DNA and transcription factor TATA-box-binding protein (TBP). We found that UAF recognizes DNA using a hexameric histone-like scaffold with markedly different interactions compared with the nucleosome and the histone-fold-rich transcription factor IID (TFIID). In parallel, UAF positions TBP for Core Factor binding, which leads to Pol I recruitment, while sequestering it from DNA and Pol II/III-specific transcription factors. Our work thus reveals the structural basis of RNA Pol selection by a transcription factor.


Subject(s)
DNA-Binding Proteins , RNA Polymerase I , DNA/metabolism , DNA-Binding Proteins/metabolism , Histones/genetics , Histones/metabolism , RNA/metabolism , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins , Transcription Factors/metabolism , Transcription, Genetic
3.
Nat Struct Mol Biol ; 28(12): 997-1008, 2021 12.
Article in English | MEDLINE | ID: mdl-34887565

ABSTRACT

RNA polymerase I (Pol I) specifically synthesizes ribosomal RNA. Pol I upregulation is linked to cancer, while mutations in the Pol I machinery lead to developmental disorders. Here we report the cryo-EM structure of elongating human Pol I at 2.7 Å resolution. In the exit tunnel, we observe a double-stranded RNA helix that may support Pol I processivity. Our structure confirms that human Pol I consists of 13 subunits with only one subunit forming the Pol I stalk. Additionally, the structure of human Pol I in complex with the initiation factor RRN3 at 3.1 Å resolution reveals stalk flipping upon RRN3 binding. We also observe an inactivated state of human Pol I bound to an open DNA scaffold at 3.3 Å resolution. Lastly, the high-resolution structure of human Pol I allows mapping of disease-related mutations that can aid understanding of disease etiology.


Subject(s)
Neoplasms/genetics , Pol1 Transcription Initiation Complex Proteins/metabolism , RNA Polymerase I/metabolism , Binding Sites , Cryoelectron Microscopy , DNA-Binding Proteins/metabolism , Humans , Models, Molecular , Neoplasms/pathology , Protein Binding/physiology , Protein Conformation , Protein Multimerization , RNA Polymerase I/genetics , RNA, Ribosomal/biosynthesis , Transcription, Genetic/genetics
4.
Nucleic Acids Res ; 49(15): 8866-8885, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34329466

ABSTRACT

A key regulatory process during Drosophila development is the localized suppression of the hunchback mRNA translation at the posterior, which gives rise to a hunchback gradient governing the formation of the anterior-posterior body axis. This suppression is achieved by a concerted action of Brain Tumour (Brat), Pumilio (Pum) and Nanos. Each protein is necessary for proper Drosophila development. The RNA contacts have been elucidated for the proteins individually in several atomic-resolution structures. However, the interplay of all three proteins during RNA suppression remains a long-standing open question. Here, we characterize the quaternary complex of the RNA-binding domains of Brat, Pum and Nanos with hunchback mRNA by combining NMR spectroscopy, SANS/SAXS, XL/MS with MD simulations and ITC assays. The quaternary hunchback mRNA suppression complex comprising the RNA binding domains is flexible with unoccupied nucleotides functioning as a flexible linker between the Brat and Pum-Nanos moieties of the complex. Moreover, the presence of the Pum-HD/Nanos-ZnF complex has no effect on the equilibrium RNA binding affinity of the Brat RNA binding domain. This is in accordance with previous studies, which showed that Brat can suppress mRNA independently and is distributed uniformly throughout the embryo.


Subject(s)
DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Embryonic Development/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Animals , Body Patterning/genetics , DNA-Binding Proteins/ultrastructure , Drosophila Proteins/ultrastructure , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental , Multiprotein Complexes/genetics , Multiprotein Complexes/ultrastructure , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Quaternary , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/ultrastructure , RNA-Binding Proteins/ultrastructure , Scattering, Small Angle , Transcription Factors/ultrastructure , X-Ray Diffraction
5.
Nat Commun ; 10(1): 5543, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804486

ABSTRACT

RNA polymerase I (Pol I) assembles with core factor (CF) and Rrn3 on the rDNA core promoter for transcription initiation. Here, we report cryo-EM structures of closed, intermediate and open Pol I initiation complexes from 2.7 to 3.7 Å resolution to visualize Pol I promoter melting and to structurally and biochemically characterize the recognition mechanism of Pol I promoter DNA. In the closed complex, double-stranded DNA runs outside the DNA-binding cleft. Rotation of CF and upstream DNA with respect to Pol I and Rrn3 results in the spontaneous loading and opening of the promoter followed by cleft closure and positioning of the Pol I A49 tandem winged helix domain (tWH) onto DNA. Conformational rearrangement of A49 tWH leads to a clash with Rrn3 to initiate complex disassembly and promoter escape. Comprehensive insight into the Pol I transcription initiation cycle allows comparisons with promoter opening by Pol II and Pol III.


Subject(s)
DNA, Fungal/genetics , Promoter Regions, Genetic/genetics , RNA Polymerase I/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Binding Sites/genetics , Cryoelectron Microscopy , DNA, Fungal/chemistry , DNA, Fungal/metabolism , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Domains , RNA Polymerase I/chemistry , RNA Polymerase I/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Transcription Initiation, Genetic
6.
Cell Chem Biol ; 26(11): 1573-1585.e10, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31543461

ABSTRACT

Anti-silencing function 1 (ASF1) is a conserved H3-H4 histone chaperone involved in histone dynamics during replication, transcription, and DNA repair. Overexpressed in proliferating tissues including many tumors, ASF1 has emerged as a promising therapeutic target. Here, we combine structural, computational, and biochemical approaches to design peptides that inhibit the ASF1-histone interaction. Starting from the structure of the human ASF1-histone complex, we developed a rational design strategy combining epitope tethering and optimization of interface contacts to identify a potent peptide inhibitor with a dissociation constant of 3 nM. When introduced into cultured cells, the inhibitors impair cell proliferation, perturb cell-cycle progression, and reduce cell migration and invasion in a manner commensurate with their affinity for ASF1. Finally, we find that direct injection of the most potent ASF1 peptide inhibitor in mouse allografts reduces tumor growth. Our results open new avenues to use ASF1 inhibitors as promising leads for cancer therapy.


Subject(s)
Cell Cycle Proteins/metabolism , Drug Design , Molecular Chaperones/metabolism , Peptides/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Epitopes/chemistry , Epitopes/metabolism , Female , Histones/chemistry , Histones/metabolism , Humans , Kinetics , Mice , Mice, Inbred BALB C , Molecular Chaperones/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/pathology , Peptides/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Thermodynamics , Transplantation, Homologous
7.
Proc Natl Acad Sci U S A ; 115(50): E11751-E11760, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30478053

ABSTRACT

Retroviruses assemble and bud from infected cells in an immature form and require proteolytic maturation for infectivity. The CA (capsid) domains of the Gag polyproteins assemble a protein lattice as a truncated sphere in the immature virion. Proteolytic cleavage of Gag induces dramatic structural rearrangements; a subset of cleaved CA subsequently assembles into the mature core, whose architecture varies among retroviruses. Murine leukemia virus (MLV) is the prototypical γ-retrovirus and serves as the basis of retroviral vectors, but the structure of the MLV CA layer is unknown. Here we have combined X-ray crystallography with cryoelectron tomography to determine the structures of immature and mature MLV CA layers within authentic viral particles. This reveals the structural changes associated with maturation, and, by comparison with HIV-1, uncovers conserved and variable features. In contrast to HIV-1, most MLV CA is used for assembly of the mature core, which adopts variable, multilayered morphologies and does not form a closed structure. Unlike in HIV-1, there is similarity between protein-protein interfaces in the immature MLV CA layer and those in the mature CA layer, and structural maturation of MLV could be achieved through domain rotations that largely maintain hexameric interactions. Nevertheless, the dramatic architectural change on maturation indicates that extensive disassembly and reassembly are required for mature core growth. The core morphology suggests that wrapping of the genome in CA sheets may be sufficient to protect the MLV ribonucleoprotein during cell entry.


Subject(s)
Capsid/chemistry , Capsid/ultrastructure , Leukemia Virus, Murine/chemistry , Leukemia Virus, Murine/ultrastructure , Amino Acid Sequence , Animals , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Crystallography, X-Ray , Electron Microscope Tomography , Gene Products, gag/chemistry , Gene Products, gag/genetics , Gene Products, gag/ultrastructure , HEK293 Cells , HIV-1/chemistry , HIV-1/genetics , HIV-1/ultrastructure , Humans , Leukemia Virus, Murine/genetics , Mice , Models, Molecular , Protein Domains , Protein Structure, Quaternary , Sequence Homology, Amino Acid , Virion/chemistry , Virion/genetics , Virion/ultrastructure
8.
Biomol NMR Assign ; 7(2): 241-4, 2013 Oct.
Article in English | MEDLINE | ID: mdl-22899250

ABSTRACT

We report here the resonance assignment of EDK-∆-Bd37, conformational mutant potentially displaying the "open" conformation of Bd37, a 25 kDa surface protein from the Apicomplexa parasite Babesia divergens that could undergo drastic conformational changes during erythrocyte invasion.


Subject(s)
Babesia/metabolism , Mutant Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protons , Protozoan Proteins/chemistry , Carbon Isotopes , Nitrogen Isotopes
9.
Proc Natl Acad Sci U S A ; 109(17): E1001-10, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22460800

ABSTRACT

The 26S proteasome, a molecular machine responsible for regulated protein degradation, consists of a proteolytic core particle (20S CP) associated with 19S regulatory particles (19S RPs) subdivided into base and lid subcomplexes. The assembly of 19S RP base subcomplex is mediated by multiple dedicated chaperones. Among these, Hsm3 is important for normal growth and directly targets the carboxyl-terminal (C-terminal) domain of Rpt1 of the Rpt1-Rpt2-Rpn1 assembly intermediate. Here, we report crystal structures of the yeast Hsm3 chaperone free and bound to the C-terminal domain of Rpt1. Unexpectedly, the structure of the complex suggests that within the Hsm3-Rpt1-Rpt2 module, Hsm3 also contacts Rpt2. We show that in both yeast and mammals, Hsm3 actually directly binds the AAA domain of Rpt2. The Hsm3 C-terminal region involved in this interaction is required in vivo for base assembly, although it is dispensable for binding Rpt1. Although Rpt1 and Rpt2 exhibit weak affinity for each other, Hsm3 unexpectedly acts as an essential matchmaker for the Rpt1-Rpt2-Rpn1 assembly by bridging both Rpt1 and Rpt2. In addition, we provide structural and biochemical evidence on how Hsm3/S5b may regulate the 19S RP association to the 20S CP proteasome. Our data point out the diverse functions of assembly chaperones.


Subject(s)
Molecular Chaperones/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphatases/metabolism , Binding Sites , Models, Molecular , Molecular Chaperones/chemistry , Protein Conformation , Proteolysis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry
10.
J Biol Chem ; 287(12): 9495-508, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22294693

ABSTRACT

Babesiosis (formerly known as piroplasmosis) is a tick-borne disease caused by the intraerythrocytic development of protozoa parasites from the genus Babesia. Like Plasmodium falciparum, the agent of malaria, or Toxoplasma gondii, responsible for human toxoplasmosis, Babesia belongs to the Apicomplexa family. Babesia canis is the agent of the canine babesiosis in Europe. Clinical manifestations of this disease range from mild to severe and possibly lead to death by multiple organ failure. The identification and characterization of parasite surface proteins represent major goals, both for the understanding of the Apicomplexa invasion process and for the vaccine potential of such antigens. Indeed, we have already shown that Bd37, the major antigenic adhesion protein from Babesia divergens, the agent of bovine babesiosis, was able to induce complete protection against various parasite strains. The major merozoite surface antigens of Babesia canis have been described as a 28-kDa membrane protein family, anchored at the surface of the merozoite. Here, we demonstrate that Bc28.1, a major member of this multigenic family, is expressed at high levels at the surface of the merozoite. This protein is also found in the parasite in vitro culture supernatants, which are the basis of effective vaccines against canine babesiosis. We defined the erythrocyte binding function of Bc28.1 and determined its high resolution solution structure using NMR spectroscopy. Surprisingly, although these proteins are thought to play a similar role in the adhesion process, the structure of Bc28.1 from B. canis appears unrelated to the previously published structure of Bd37 from B. divergens. Site-directed mutagenesis experiments also suggest that the mechanism of the interaction with the erythrocyte membrane could be different for the two proteins. The resolution of the structure of Bc28 represents a milestone for the characterization of the parasite erythrocyte binding and its interaction with the host immune system.


Subject(s)
Babesia/metabolism , Babesiosis/veterinary , Dog Diseases/parasitology , Erythrocytes/parasitology , Merozoites/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Amino Acid Sequence , Animals , Babesia/chemistry , Babesia/genetics , Babesia/growth & development , Babesiosis/parasitology , Dogs , Merozoites/chemistry , Merozoites/growth & development , Molecular Sequence Data , Protein Binding , Protozoan Proteins/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...