Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 221(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39141127

ABSTRACT

HIV-1 antiretroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses, leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here, we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 100-10,000× less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir, thereby influencing cytopathic effects and proviral immune evasion.


Subject(s)
HIV Infections , HIV-1 , Proviruses , Transcription, Genetic , Virus Integration , Virus Latency , HIV-1/genetics , HIV-1/physiology , Humans , Proviruses/genetics , Virus Latency/genetics , Virus Integration/genetics , HIV Infections/virology , HIV Infections/genetics , Gene Expression Regulation, Viral , Promoter Regions, Genetic/genetics , CD4-Positive T-Lymphocytes/virology , T-Lymphocytes/virology , T-Lymphocytes/immunology , Cell Line
2.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746186

ABSTRACT

HIV-1 anti-retroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 10010,000X less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir thereby influencing cytopathic effects and proviral immune evasion.

3.
Nature ; 626(7998): 385-391, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096903

ABSTRACT

A limitation of current SARS-CoV-2 vaccines is that they provide minimal protection against infection with current Omicron subvariants1,2, although they still provide protection against severe disease. Enhanced mucosal immunity may be required to block infection and onward transmission. Intranasal administration of current vaccines has proven inconsistent3-7, suggesting that alternative immunization strategies may be required. Here we show that intratracheal boosting with a bivalent Ad26-based SARS-CoV-2 vaccine results in substantial induction of mucosal humoral and cellular immunity and near-complete protection against SARS-CoV-2 BQ.1.1 challenge. A total of 40 previously immunized rhesus macaques were boosted with a bivalent Ad26 vaccine by the intramuscular, intranasal and intratracheal routes, or with a bivalent mRNA vaccine by the intranasal route. Ad26 boosting by the intratracheal route led to a substantial expansion of mucosal neutralizing antibodies, IgG and IgA binding antibodies, and CD8+ and CD4+ T cell responses, which exceeded those induced by Ad26 boosting by the intramuscular and intranasal routes. Intratracheal Ad26 boosting also led to robust upregulation of cytokine, natural killer, and T and B cell pathways in the lungs. After challenge with a high dose of SARS-CoV-2 BQ.1.1, intratracheal Ad26 boosting provided near-complete protection, whereas the other boosting strategies proved less effective. Protective efficacy correlated best with mucosal humoral and cellular immune responses. These data demonstrate that these immunization strategies induce robust mucosal immunity, suggesting the feasibility of developing vaccines that block respiratory viral infections.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Immunization, Secondary , Macaca mulatta , SARS-CoV-2 , Animals , Humans , Administration, Intranasal , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cytokines/immunology , Immunity, Mucosal/immunology , Immunization, Secondary/methods , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Injections, Intramuscular , Killer Cells, Natural/immunology , Lung/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology , SARS-CoV-2/classification , SARS-CoV-2/immunology , Trachea/immunology , Trachea/virology
SELECTION OF CITATIONS
SEARCH DETAIL