Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(8): 2061-2064, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621076

ABSTRACT

Controlling the properties of mid- and far-infrared radiation can provide a means to transiently alter the properties of materials for novel applications. However, a limited number of optical elements are available to control its polarization state. Here we show that a 15-µm thick liquid crystal cell containing 8CB (4-octyl-4'-cyanobiphenyl) in the ordered, smectic A phase can be used as a phase retarder or wave plate. This was tested using the bright, short-pulsed (∼1 ps) radiation centered at 16.5 µm (18.15 THz) that is emitted by a free electron laser at high repetition rate (13 MHz). These results demonstrate a possible tool for the exploration of the mid- and far-infrared range and could be used to develop novel metamaterials or extend multidimensional spectroscopy to this portion of the electromagnetic spectrum.

2.
J Chem Phys ; 159(7)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37581421

ABSTRACT

Multiphoton ionization (MPI) of alkyl iodides (RI, R = CnH2n+1, n = 1-4) has been investigated with femtosecond laser pulses centered at 800 and 400 nm along with photoelectron imaging detection. In addition, the ultraviolet (UV)-vacuum ultraviolet (VUV) absorption spectra of gas-phase RIs have been measured in the photon energy range of 5-11 eV using the VUV Fourier transform spectrometer at the VUV DESIRS beamline of the synchrotron SOLEIL facility. The use of high-laser-field strengths in matter-radiation interaction generates highly non-linear phenomena, such as the Stark shift effect, which distorts the potential energy surfaces of molecules by varying both the energy of electronic and rovibrational states and their ionization energies. The Stark shift can then generate resonances between intermediate states and an integer number of laser photons of a given wavelength, which are commonly known as Freeman resonances. Here, we study how the molecular structure of linear and branched alkyl iodides affects the UV-VUV absorption spectrum, the MPI process, and the generation of Freeman resonances. The obtained results reveal a dominant resonance in the experiments at 800 nm, which counter-intuitively appears at the same photoelectron kinetic energy in the whole alkyl iodide series. The ionization pathways of this resonance strongly involve the 6p(2E3/2) Rydberg state with different degrees of vibrational excitation, revealing an energy compensation effect as the R-chain complexity increases.

3.
Sci Rep ; 10(1): 6700, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32317645

ABSTRACT

The correlation between chemical structure and predissociation dynamics has been evaluated for a series of linear and branched alkyl iodides with increasing structural complexity by means of femtosecond time-resolved velocity map imaging experiments following excitation on the second absorption band (B-band) at around 201 nm. The time-resolved images for the iodine fragment are reported and analyzed in order to extract electronic predissociation lifetimes and the temporal evolution of the anisotropy while the experimental results are supported by ab initio calculations of the potential energy curves as a function of the C-I distance. Remarkable similarities are observed for all molecules consistent with a major predissociation of the initially populated bound Rydberg states 6A″ and 7A' through a crossing with the purely repulsive states 7A″, 8A' and 8A″ leading to a major R + I*(2P1/2) (R = CH3, C2H5, n-C3H7, n-C4H9, i-C3H7 and t-C4H9) dissociation channel. The reported electronic predissociation lifetimes are found to decrease for an increasing size of the linear radical, reflecting the shifts observed in the position of the crossings in the potential energy curves, and very likely a greater non-adiabatic coupling between the initially populated Rydberg states and the repulsive states leading to dissociation induced by other coordinates associated to key vibrational normal modes. The loss of anisotropy is fully accounted for by the parent molecular rotation during predissociation and the rotational temperature of the parent molecule in the molecular beam is reasonably derived.

4.
J Chem Phys ; 152(1): 014304, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31914745

ABSTRACT

Clocking of electronically and vibrationally state-resolved channels of the fast photodissociation of CH3I in the A-band is re-examined in a combined experimental and theoretical study. Experimentally, a femtosecond pump-probe scheme is employed in the modality of resonant probing by resonance enhanced multiphoton ionization (REMPI) of the methyl fragment in different vibrational states and detection through fragment velocity map ion (VMI) imaging as a function of the time delay. We revisit excitation to the center of the A-band at 268 nm and report new results for excitation to the blue of the band center at 243 nm. Theoretically, two approaches have been employed to shed light into the observations: first, a reduced dimensionality 4D nonadiabatic wavepacket calculation using the potential energy surfaces by Xie et al. [J. Phys. Chem. A 104, 1009 (2000)]; and second, a full dimension 9D trajectory surface-hopping calculation on the same potential energy surfaces, including the quantization of vibrational states of the methyl product. In addition, high level ab initio electronic structure calculations have been carried out to describe the CH3 3pz Rydberg state involved in the (2 + 1) REMPI probing process, as a function of the carbon-iodine (C-I) distance. A general qualitative agreement is obtained between experiment and theory, but the effect of methyl vibrational excitation in the umbrella mode on the clocking times is not well reproduced. The theoretical results reveal that no significant effect on the state-resolved appearance times is exerted by the nonadiabatic crossing through the conical intersection present in the first absorption band. The vibrationally state resolved clocking times observed experimentally can be rationalized when the (2 + 1) REMPI probing process is considered. None of the other probing methods applied thus far, i.e., multiphoton ionization photoelectron spectroscopy, soft X-ray inner-shell photoelectron spectroscopy, VUV single-photon ionization, and XUV core-to-valence transient absorption spectroscopy, have been able to provide quantum state-resolved (vibrational) clocking times. More experiments would be needed to disentangle the fine details in the clocking times and dissociation dynamics arising from the detection of specific quantum-states of the molecular fragments.

5.
Phys Chem Chem Phys ; 21(28): 15695-15704, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31271396

ABSTRACT

Femtosecond time-resolved velocity map ion imaging experiments are reported on the second absorption band (B-band) of ethyl iodide at 201.19 and 200.08 nm, corresponding to the 000 and 1810 transitions, i.e., the origin of the band and the first most intense vibronic state assigned to one quantum of excitation in the methyl torsion mode. Electronic predissociation lifetimes and the temporal evolution of the anisotropy have been determined by time-resolved resonance-enhanced multiphoton ionization of iodine and ethyl fragment images. A shorter lifetime measured at the origin of the band in comparison with methyl iodide indicates that predissociation in ethyl iodide is more favorable due to a stronger coupling between the initial Rydberg state and the valence repulsive state correlating with the dissociation fragments. Moreover, vibrational activity in the methyl torsion in the Rydberg state seems to enhance the probability of transfer of population to the valence repulsive state leading to a faster dissociation. The perpendicular character of the transition at early times and the loss of anisotropy as a function of time have been determined from the time-resolved angular distributions of the iodine and ethyl ion images. The initial anisotropy value is consistent with a purely perpendicular transition compatible with the excitation of the [6A'', 7A'] states with a minor parallel component to the C-I bond. The loss of initial anisotropy over time highlights the parent molecular rotation during predissociation and is compatible with a rotational temperature of the parent molecule of 100 K.

6.
Phys Chem Chem Phys ; 20(32): 20766-20778, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30020280

ABSTRACT

A comparative study of the ultrafast photodissociation dynamics of the dihalomethanes CH2ICl and CH2BrI has been carried out at 268 nm, around the maximum of the first absorption band, employing femtosecond velocity map ion imaging in conjunction with high level ab initio electronic structure calculations and full dimension on-the-fly trajectory calculations including surface hopping. Total translational energy distributions and angular distributions of the iodine fragments as well as reaction times for the C-I bond cleavage are presented and discussed along with the computed absorption spectra, potential energy curves and trajectories. The revealed dynamics is mainly governed by absorption to the 5A' state for CH2BrI while two dissociation pathways, through the 4A' or 5A' states, are in competition for CH2lCI. An anchor effect due to the substituent halogen atom (Br or Cl), which implies significant rotational motion of the dissociating molecule, characterizes the photodissociation in both dihalomethanes and leads to a remarkable rotational energy of the radical co-fragment. This energy flux into the internal degrees of freedom of the molecules is the main key factor governing the real time reaction dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...