Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Infect Chemother ; 22(6): 395-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27066881

ABSTRACT

We surveyed the status of community-acquired infections involving four extended-spectrum ß-lactamase (ESBL)-producing bacteria (Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis) isolated from clinical specimens from 11 social insurance hospitals in Japan in 2012. These are member hospitals of the Japan Community Healthcare Organization, an independent administrative hospital organization. The isolation rates for E. coli, K. pneumoniae, K. oxytoca, and P. mirabilis were 14.0% (165/1176), 3.3% (16/480), 3.1% (4/130), and 15.9% (17/107), respectively. The CTX-M-9 group, the most frequently detected genotype, was found in 77.0% (127/165) of E. coli and 43.8% (7/16) of K. pneumoniae isolates. Among K. oxytoca isolates, 75% (3/4) were the CTX-M-1 group, and all 17 P. mirabilis strains were the CTX-M-2 group. ESBL-producing bacteria isolation rates in each hospital ranged from 5.8% to 21.5% (median 9.5%), and the proportion of community-acquired infections among ESBL-producing bacteria isolates ranged from 1.6% to 30.8% (median 11.4%) in each hospital. Overall, the rates of ESBL-producing bacterial infection in all community-acquired infections and in all hospital infections were 10.6% (115/1081) and 10.7% (87/812), respectively. The ESBL-producing bacteria are not limited to certain regions or hospitals but are spreading in communities throughout Japan.


Subject(s)
Community-Acquired Infections/microbiology , Enterobacteriaceae/isolation & purification , Hospitals, Community , beta-Lactamases/biosynthesis , Adult , Aged , Aged, 80 and over , Child , DNA Fingerprinting , Enterobacteriaceae/enzymology , Enterobacteriaceae/genetics , Genotype , Humans , Infant , Japan , Middle Aged , Social Security , Young Adult
2.
Med Mycol ; 50(1): 74-80, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21619498

ABSTRACT

Malassezia furfur, an etiological agent of catheter-associated fungemia, requires long-chain fatty acids for in vitro growth. We examined the applicability of rDNA sequence analysis, autoaggregation testing in liquid culture, utilization of parenteral lipid emulsions, and phospholipase activity for discrimination of catheter-associated M. furfur strains. The rDNA sequence types of catheter-associated M. furfur strains were distinct from those of other isolates. All M. furfur isolates recovered from blood culture bottles and the tips of catheters from patients receiving fat emulsion therapy were type I-3. Only M. furfur isolate GIFU 01 from a blood culture bottle showed no autoaggregation in liquid culture. All strains of M. furfur examined grew well on Sabouraud's dextrose agar supplemented with Intralipid lipid emulsion as compared to individual Tweens (20, 40, 60, 80) and Cremophor EL. A high percentage of type I-3 M. furfur strains (80.0%) showed very high phospholipase activity compared to type I-1 and I-4 strains obtained from healthy skin of the same subjects or healthy control subjects (20.0% and 0.0%, respectively). The blood culture bottle isolate GIFU 01 showed very high lipolytic enzymes activity for Intralipid but no phospholipase activity. These results suggest that particular factors, such as non-autoaggregation and very high lipolytic enzyme activity for parenteral lipid emulsions, play important roles in the growth and pathogenicity of Malassezia-related sepsis.


Subject(s)
Catheters/microbiology , Malassezia/classification , Malassezia/isolation & purification , Adult , Blood/microbiology , Cell Adhesion , Cluster Analysis , Culture Media/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Fungemia/microbiology , Humans , Lipid Metabolism , Malassezia/genetics , Malassezia/physiology , Molecular Typing , Mycological Typing Techniques , Phospholipases/metabolism , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...