Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826453

ABSTRACT

C. elegans are exposed to a variety of pathogenic and non-pathogenic bacteria species in their natural environment. Correspondingly, C. elegans has evolved an ability to discern between nutritive and infectious bacterial food sources. Here we show that C. elegans can learn to avoid the pathogenic bacteria Pseudomonas fluorescens 15 (PF15), and that this learned avoidance behavior is passed on to progeny for four generations, as we previously demonstrated for Pseudomonas aeruginosa (PA14) and Pseudomonas vranovensis , using similar mechanisms, including the involvement of both the TGF-ß ligand DAF-7 and Cer1 retrotransposon-encoded virus-like particles. PF15 small RNAs are both necessary and sufficient to induce this transgenerational avoidance behavior. Unlike PA14 or P. vranovensis , PF15 does not use P11, Pv1, or a small RNA with maco-1 homology for this avoidance; instead, an unrelated PF15 small RNA, Pfs1, that targets the C. elegans vab-1 Ephrin receptor gene is necessary and sufficient for learned avoidance, suggesting the evolution of yet another bacterial sRNA/ C. elegans gene target pair involved in transgenerational inheritance of pathogen avoidance. As VAB-2 Ephrin receptor ligand and MACO-1 knockdown also induce PF15 avoidance, we have begun to understand the genetic pathway involved in small RNA targeted pathogenic avoidance. Moreover, these data show that axon guidance pathway genes (VAB-1 and VAB-2) have previously unknown adult roles in regulating neuronal function. C. elegans may have evolved multiple bacterial specificity-encoded small RNA-dependent mechanisms to avoid different pathogenic bacteria species, thereby providing progeny with a survival advantage in a dynamic environment.

2.
iScience ; 27(6): 109910, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38783998

ABSTRACT

Aging is a complex biological process with sexually dimorphic aspects. Although cognitive aging of Caenorhabditis elegans hermaphrodites has been studied, less is known about cognitive decline in males. We found that cognitive aging has both sex-shared and sex-dimorphic characteristics, and we identified neuron-specific age-associated sex-differential targets. In addition to sex-shared neuronal aging genes, males differentially downregulate mitochondrial metabolic genes and upregulate GPCR genes with age, while the X chromosome exhibits increased gene expression in hermaphrodites and altered dosage compensation complex expression with age, indicating possible X chromosome dysregulation that contributes to sexual dimorphism in cognitive aging. Finally, the sex-differentially expressed gene hrg-7, an aspartic-type endopeptidase, regulates male cognitive aging but does not affect hermaphrodites' behaviors. These results suggest that males and hermaphrodites exhibit different age-related neuronal changes. This study will strengthen our understanding of sex-specific vulnerability and resilience and identify pathways to target with treatments that could benefit both sexes.

3.
Neuron ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38692279

ABSTRACT

Genome-wide association studies (GWASs) have uncovered over 75 genomic loci associated with risk for late-onset Alzheimer's disease (LOAD), but identification of the underlying causal genes remains challenging. Studies of induced pluripotent stem cell (iPSC)-derived neurons from LOAD patients have demonstrated the existence of neuronal cell-intrinsic functional defects. Here, we searched for genetic contributions to neuronal dysfunction in LOAD using an integrative systems approach that incorporated multi-evidence-based gene mapping and network-analysis-based prioritization. A systematic perturbation screening of candidate risk genes in Caenorhabditis elegans (C. elegans) revealed that neuronal knockdown of the LOAD risk gene orthologs vha-10 (ATP6V1G2), cmd-1 (CALM3), amph-1 (BIN1), ephx-1 (NGEF), and pho-5 (ACP2) alters short-/intermediate-term memory function, the cognitive domain affected earliest during LOAD progression. These results highlight the impact of LOAD risk genes on evolutionarily conserved memory function, as mediated through neuronal endosomal dysfunction, and identify new targets for further mechanistic interrogation.

4.
PLoS Genet ; 20(3): e1011178, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547071

ABSTRACT

C. elegans can learn to avoid pathogenic bacteria through several mechanisms, including bacterial small RNA-induced learned avoidance behavior, which can be inherited transgenerationally. Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and transgenerational inheritance of that avoidance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we screened a set of wild habitat bacteria, and found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. We identified Pv1, a small RNA expressed in P. vranovensis, that has a 16-nucleotide match to an exon of the C. elegans gene maco-1. Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance may be functional in C. elegans' natural environment, and that this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our data also suggest that different bacterial small RNA-mediated regulation systems evolved independently, but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , RNA, Small Interfering/genetics , RNA Interference , RNA, Bacterial/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Bacteria/genetics , Bacteria/metabolism
5.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370779

ABSTRACT

The insulin/insulin-like signaling (IIS) pathway regulates many of C. elegans' adult functions, including learning and memory 1 . While whole-worm and tissue-specific transcriptomic analyses have identified IIS targets 2,3 , a higher-resolution single-cell approach is required to identify changes that confer neuron-specific improvements in the long-lived insulin receptor mutant, daf-2 . To understand how behaviors that are controlled by a small number of neurons change in daf-2 mutants, we used the deep resolution of single-nucleus RNA sequencing to define each neuron type's transcriptome in adult wild-type and daf-2 mutants. First, we found surprising differences between wild-type L4 larval neurons and young adult neurons in chemoreceptor expression, synaptic genes, and learning and memory genes. These Day 1 adult neuron transcriptomes allowed us to identify adult AWC-specific regulators of chemosensory function and to predict neuron-to-neuron peptide/receptor pairs. We then identified gene expression changes that correlate with daf-2's improved cognitive functions, particularly in the AWC sensory neuron that controls learning and associative memory 4 , and used behavioral assays to test their roles in cognitive function. Combining deep single-neuron transcriptomics, genetic manipulation, and behavioral analyses enabled us to identify genes that may function in a single adult neuron to control behavior, including conserved genes that function in learning and memory. One-Sentence Summary: Single-nucleus sequencing of adult wild-type and daf-2 C. elegans neurons reveals functionally relevant transcriptional changes, including regulators of chemosensation, learning, and memory.

6.
bioRxiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38370685

ABSTRACT

Reproductive aging is one of the earliest human aging phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline. However, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to C. elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Importantly, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with Vitamin B1, a cofactor needed for BCAA metabolism.

7.
Nat Metab ; 6(4): 724-740, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38418585

ABSTRACT

Reproductive ageing is one of the earliest human ageing phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline; however, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to Caenorhabditis elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Notably, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with vitamin B1, a cofactor needed for BCAA metabolism.


Subject(s)
Aging , Amino Acids, Branched-Chain , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Mitochondria , Oocytes , Reproduction , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Amino Acids, Branched-Chain/metabolism , Reproduction/physiology , Aging/metabolism , Mitochondria/metabolism , Oocytes/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Reactive Oxygen Species/metabolism
8.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38077073

ABSTRACT

Detecting chemical signals is important for identifying food sources and avoiding harmful agents. Like most animals, C. elegans use olfaction to chemotax towards their main food source, bacteria. However, little is known about the bacterial compounds governing C. elegans attraction to bacteria and the physiological importance of these compounds to bacteria. Here, we address these questions by investigating the function of a small RNA, P11, in the pathogen, Pseudomonas aeruginosa, that was previously shown to mediate learned pathogen avoidance. We discovered that this RNA also affects the attraction of untrained C. elegans to P. aeruginosa and does so by controlling production of ammonia, a volatile odorant produced during nitrogen assimilation. We untangle the complex regulation of P. aeruginosa nitrogen assimilation, which is mediated by a partner-switching mechanism involving environmental nitrates, sensor proteins, and P11. In addition to mediating C. elegans attraction, nitrogen assimilation is important for bacterial fitness and pathogenesis during C. elegans infection by P. aeruginosa . These studies define ammonia as a major mediator of trans-kingdom signaling, reveal the physiological importance of nitrogen assimilation for both bacteria and host organisms, and highlight how a bacterial metabolic pathway can either benefit or harm a host in different contexts.

9.
Cell Rep ; 42(9): 113151, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37713310

ABSTRACT

Loss of cognitive function with age is devastating. EGL-30/GNAQ and Gαq signaling pathways are highly conserved between C. elegans and mammals, and murine Gnaq is enriched in hippocampal neurons and declines with age. We found that activation of EGL-30 in aged worms triples memory span, and GNAQ gain of function significantly improved memory in aged mice: GNAQ(gf) in hippocampal neurons of 24-month-old mice (equivalent to 70- to 80-year-old humans) rescued age-related impairments in well-being and memory. Single-nucleus RNA sequencing revealed increased expression of genes regulating synaptic function, axon guidance, and memory in GNAQ-treated mice, and worm orthologs of these genes were required for long-term memory extension in worms. These experiments demonstrate that C. elegans is a powerful model to identify mammalian regulators of memory, leading to the identification of a pathway that improves memory in extremely old mice. To our knowledge, this is the oldest age at which an intervention has improved age-related cognitive decline.


Subject(s)
Caenorhabditis elegans , Cognition , Humans , Animals , Mice , Aged , Child, Preschool , Aged, 80 and over , Caenorhabditis elegans/metabolism , Cognition/physiology , Signal Transduction/physiology , Neurons/metabolism , Memory/physiology , GTP-Binding Proteins/metabolism , Hippocampus/metabolism , Aging/metabolism , Mammals/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
10.
bioRxiv ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37503135

ABSTRACT

Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and its transgenerational inheritance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, like PA14, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure to GRb0427, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. Using bacterial small RNA sequencing, we identified Pv1, a small RNA from GRb0427, that matches the sequence of C. elegans maco-1. We find that Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina; this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance are functional in C. elegans' natural environment, and that different bacterial small RNA-mediated regulation systems evolved independently but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.

11.
Annu Rev Cell Dev Biol ; 39: 45-65, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37339681

ABSTRACT

Myriad mechanisms have evolved to adapt to changing environments. Environmental stimuli alter organisms' physiology to create memories of previous environments. Whether these environmental memories can cross the generational barrier has interested scientists for centuries. The logic of passing on information from generation to generation is not well understood. When is it useful to remember ancestral conditions, and when might it be deleterious to continue to respond to a context that may no longer exist? The key might be found in understanding the environmental conditions that trigger long-lasting adaptive responses. We discuss the logic that biological systems may use to remember environmental conditions. Responses spanning different generational timescales employ different molecular machineries and may result from differences in the duration or intensity of the exposure. Understanding the molecular components of multigenerational inheritance and the logic underlying beneficial and maladaptive adaptations is fundamental to understanding how organisms acquire and transmit environmental memories across generations.

12.
PLoS Biol ; 21(5): e3002132, 2023 05.
Article in English | MEDLINE | ID: mdl-37252935

ABSTRACT

Breakthroughs in the longevity field over the past few decades have led to major shifts in how we attack the problem of aging. What have been the most important of these shifts in our perspectives, aims, and approaches that will likely guide future research?


Subject(s)
Geroscience , Longevity
13.
Lab Chip ; 23(12): 2738-2757, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37221962

ABSTRACT

The potential to carry out high-throughput assays in a whole organism in a small space is one of the benefits of C. elegans, but worm assays often require a large sample size with frequent physical manipulations, rendering them highly labor-intensive. Microfluidic assays have been designed with specific questions in mind, such as analysis of behavior, embryonic development, lifespan, and motility. While these devices have many advantages, current technologies to automate worm experiments have several limitations that prevent widespread adoption, and most do not allow analyses of reproduction-linked traits. We developed a miniature C. elegans lab-on-a-chip device, CeLab, a reusable, multi-layer device with 200 separate incubation arenas that allows progeny removal, to automate a variety of worm assays on both individual and population levels. CeLab enables high-throughput simultaneous analysis of lifespan, reproductive span, and progeny production, refuting assumptions about the disposable soma hypothesis. Because CeLab chambers require small volumes, the chip is ideal for drug screens; we found that drugs previously shown to increase lifespan also increase reproductive span, and we discovered that low-dose metformin increases both. CeLab reduces the limitations of escaping and matricide that typically limit plate assays, revealing that feeding with heat-killed bacteria greatly extends lifespan and reproductive span of mated animals. CeLab allows tracking of life history traits of individuals, which revealed that the nutrient-sensing mTOR pathway mutant, sgk-1, reproduces nearly until its death. These findings would not have been possible to make in standard plate assays, in low-throughput assays, or in normal population assays.


Subject(s)
Life History Traits , Microfluidic Analytical Techniques , Animals , Caenorhabditis elegans/physiology , Microfluidics , Longevity , Reproduction
14.
Nat Aging ; 3(1): 47-63, 2023 01.
Article in English | MEDLINE | ID: mdl-37118518

ABSTRACT

The reproductive system regulates somatic aging through competing anti- and pro-aging signals. Germline removal extends somatic lifespan through conserved pathways including insulin and mammalian target-of-rapamycin signaling, while germline hyperactivity shortens lifespan through unknown mechanisms. Here we show that mating-induced germline hyperactivity downregulates piRNAs, in turn desilencing their targets, including the Hedgehog-like ligand-encoding genes wrt-1 and wrt-10, ultimately causing somatic collapse and death. Germline-produced Hedgehog signals require PTR-6 and PTR-16 receptors for mating-induced shrinking and death. Our results reveal an unconventional role of the piRNA pathway in transcriptional regulation of Hedgehog signaling and a new role of Hedgehog signaling in the regulation of longevity and somatic maintenance: Hedgehog signaling is controlled by the tunable piRNA pathway to encode the previously unknown germline-to-soma pro-aging signal. Mating-induced piRNA downregulation in the germline and subsequent Hedgehog signaling to the soma enable the animal to tune somatic resource allocation to germline needs, optimizing reproductive timing and survival.


Subject(s)
Hedgehog Proteins , Piwi-Interacting RNA , Animals , Hedgehog Proteins/genetics , RNA, Small Interfering/genetics , Germ Cells/metabolism , Aging/physiology , Mammals/genetics
15.
bioRxiv ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36711536

ABSTRACT

The potential to carry out high-throughput assays in a whole organism in a small space is one of the benefits of C. elegans , but worm assays often require a large sample size with frequent physical manipulations, rendering them highly labor-intensive. Microfluidic assays have been designed with specific questions in mind, such as analysis of behavior, embryonic development, lifespan, and motility. While these devices have many advantages, current technologies to automate worm experiments have several limitations that prevent widespread adoption, and most do not allow analyses of reproduction-linked traits. We developed a miniature C. elegans lab-on-a-chip device, Ce Lab, a reusable, multi-layer device with 200 separate incubation arenas that allows progeny removal, to automate a variety of worm assays on both individual and population levels. Ce Lab enables high-throughput simultaneous analysis of lifespan, reproductive span, and progeny production, refuting assumptions about the Disposable Soma hypothesis. Because Ce Lab chambers require small volumes, the chip is ideal for drug screens; we found that drugs previously shown to increase lifespan also increase reproductive span, and we discovered that low-dose metformin increases both. Ce Lab reduces the limitations of escaping and matricide that typically limit plate assays, revealing that feeding with heat-killed bacteria greatly extends lifespan and reproductive span of mated animals. Ce Lab allows tracking of life history traits of individuals, which revealed that the nutrient-sensing mTOR pathway mutant, sgk-1 , reproduces nearly until its death. These findings would not have been possible to make in standard plate assays, in low-throughput assays, or in normal population assays.

16.
PLoS Genet ; 18(9): e1010400, 2022 09.
Article in English | MEDLINE | ID: mdl-36126046

ABSTRACT

Women's reproductive cessation is the earliest sign of human aging and is caused by decreasing oocyte quality. Similarly, C. elegans' reproduction declines in mid-adulthood and is caused by oocyte quality decline. Aberrant mitochondrial morphology is a hallmark of age-related dysfunction, but the role of mitochondrial morphology and dynamics in reproductive aging is unclear. We examined the requirements for mitochondrial fusion and fission in oocytes of both wild-type worms and the long-lived, long-reproducing insulin-like receptor mutant daf-2. We find that normal reproduction requires both fusion and fission, but that daf-2 mutants utilize a shift towards fission, but not fusion, to extend their reproductive span and oocyte health. daf-2 mutant oocytes' mitochondria are punctate (fissioned) and this morphology is primed for mitophagy, as loss of the mitophagy regulator PINK-1 shortens daf-2's reproductive span. daf-2 mutants maintain oocyte mitochondria quality with age at least in part through a shift toward punctate mitochondrial morphology and subsequent mitophagy. Supporting this model, Urolithin A, a metabolite that promotes mitophagy, extends reproductive span in wild-type mothers-even in mid-reproduction-by maintaining youthful oocytes with age. Our data suggest that promotion of mitophagy may be an effective strategy to maintain oocyte health with age.


Subject(s)
Caenorhabditis elegans Proteins , Insulins , Adult , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Female , Humans , Longevity/genetics , Mitophagy/genetics , Oocytes/metabolism , Reproduction/genetics
17.
Sci Rep ; 12(1): 3268, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35228596

ABSTRACT

Parkinson's disease (PD) is a disabling neurodegenerative disorder in which multiple cell types, including dopaminergic and cholinergic neurons, are affected. The mechanisms of neurodegeneration in PD are not fully understood, limiting the development of therapies directed at disease-relevant molecular targets. C. elegans is a genetically tractable model system that can be used to disentangle disease mechanisms in complex diseases such as PD. Such mechanisms can be studied combining high-throughput molecular profiling technologies such as transcriptomics and metabolomics. However, the integrative analysis of multi-omics data in order to unravel disease mechanisms is a challenging task without advanced bioinformatics training. Galaxy, a widely-used resource for enabling bioinformatics analysis by the broad scientific community, has poor representation of multi-omics integration pipelines. We present the integrative analysis of gene expression and metabolite levels of a C. elegans PD model using GAIT-GM, a new Galaxy tool for multi-omics data analysis. Using GAIT-GM, we discovered an association between branched-chain amino acid metabolism and cholinergic neurons in the C. elegans PD model. An independent follow-up experiment uncovered cholinergic neurodegeneration in the C. elegans model that is consistent with cholinergic cell loss observed in PD. GAIT-GM is an easy to use Galaxy-based tool for generating novel testable hypotheses of disease mechanisms involving gene-metabolite relationships.


Subject(s)
Parkinson Disease , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cholinergic Agents/metabolism , Cholinergic Neurons/metabolism , Disease Models, Animal , Dopamine/metabolism , Parkinson Disease/metabolism
18.
Biophys J ; 121(4): 515-524, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35065051

ABSTRACT

Changes in biomechanical properties have profound impacts on human health. C. elegans might serve as a model for studying the molecular genetics of mammalian tissue decline. Previously, we found that collagens are required for insulin signaling mutants' long lifespan and that overexpression of specific collagens extends wild-type lifespan. However, whether these effects on lifespan are due to mechanical changes during aging has not yet been established. Here, we have developed two novel methods to study the cuticle: we measure mechanical properties of live animals using osmotic shock, and we directly perform the tensile test on isolated cuticles using microfluidic technology. Using these tools, we find that the cuticle, not the muscle, is responsible for changes in the "stretchiness" of C. elegans, and that cuticle stiffness is highly nonlinear and anisotropic. We also found that collagen mutations alter the integrity of the cuticle by significantly changing the elasticity. In addition, aging stiffens the cuticle under mechanical loads beyond the cuticle's healthy stretched state. Measurements of elasticity showed that long-lived daf-2 mutants were considerably better at preventing progressive mechanical changes with age. These tests of C. elegans biophysical properties suggest that the cuticle is responsible for their resilience.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Collagen , Elasticity , Longevity/genetics , Mammals
19.
Nat Aging ; 2(9): 809-823, 2022 09.
Article in English | MEDLINE | ID: mdl-37118502

ABSTRACT

Interactions between the sexes negatively impact health in many species. In Caenorhabditis, males shorten the lifespan of the opposite sex-hermaphrodites or females. Here we use transcriptomic profiling and targeted screens to systematically uncover conserved genes involved in male-induced demise in C. elegans. Some genes (for example, delm-2, acbp-3), when knocked down, are specifically protective against male-induced demise. Others (for example, sri-40), when knocked down, extend lifespan with and without males, suggesting general mechanisms of protection. In contrast, many classical long-lived mutants are impacted more negatively than wild type by the presence of males, highlighting the importance of sexual environment for longevity. Interestingly, genes induced by males are triggered by specific male components (seminal fluid, sperm and pheromone), and manipulating these genes in combination in hermaphrodites induces stronger protection. One of these genes, the conserved ion channel delm-2, acts in the nervous system and intestine to regulate lipid metabolism. Our analysis reveals striking differences in longevity in single sex versus mixed sex environments and uncovers elaborate strategies elicited by sexual interactions that could extend to other species.


Subject(s)
Caenorhabditis , Disorders of Sex Development , Animals , Female , Male , Caenorhabditis elegans/genetics , Semen , Longevity/genetics , Spermatozoa , Disorders of Sex Development/genetics
20.
G3 (Bethesda) ; 11(10)2021 09 27.
Article in English | MEDLINE | ID: mdl-34568934

ABSTRACT

Caenorhabditis elegans is used as a model organism to study a wide range of topics in molecular and cellular biology. Conventional C. elegans assays often require a large sample size with frequent manipulations, rendering them labor-intensive. Automated high-throughput workflows may not be always the best solution to reduce benchwork labor, as they may introduce more complexity. Thus, most assays are carried out manually, where logging and digitizing experimental data can be as time-consuming as picking and scoring worms. Here we report the development of CeAid, C. elegans Application for inputting data, which significantly expedites the data entry process, utilizing swiping gestures and a voice recognition algorithm for logging data using a standard smartphone or Android device. This modular platform can also be adapted for a wide range of assays where recording data is laborious, even beyond worm research.


Subject(s)
Caenorhabditis elegans , Smartphone , Animals , Biological Assay , Caenorhabditis elegans/genetics , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...