Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 869592, 2022.
Article in English | MEDLINE | ID: mdl-35844238

ABSTRACT

The tongue plays a crucial role in the swallowing process, and impairment can lead to dysphagia, particularly in motor neuron diseases (MNDs) resulting in hypoglossal-tongue axis degeneration (e.g., amyotrophic lateral sclerosis and progressive bulbar palsy). This study utilized our previously established inducible rodent model of dysphagia due to targeted degeneration of the hypoglossal-tongue axis. This model was created by injecting cholera toxin B conjugated to saporin (CTB-SAP) into the genioglossus muscle of the tongue base for retrograde transport to the hypoglossal (XII) nucleus via the hypoglossal nerve, which provides the sole motor control of the tongue. Our goal was to investigate the effect of high-repetition/low-resistance tongue exercise on tongue function, strength, and structure in four groups of male rats: (1) control + sham exercise (n = 13); (2) control + exercise (n = 10); (3) CTB-SAP + sham exercise (n = 13); and (4) CTB-SAP + exercise (n = 12). For each group, a custom spout with adjustable lick force requirement for fluid access was placed in the home cage overnight on days 4 and 6 post-tongue injection. For the two sham exercise groups, the lick force requirement was negligible. For the two exercise groups, the lick force requirement was set to ∼40% greater than the maximum voluntary lick force for individual rats. Following exercise exposure, we evaluated the effect on hypoglossal-tongue axis function (via videofluoroscopy), strength (via force-lickometer), and structure [via Magnetic Resonance Imaging (MRI) of the brainstem and tongue in a subset of rats]. Results showed that sham-exercised CTB-SAP rats had significant deficits in lick rate, swallow timing, and lick force. In exercised CTB-SAP rats, lick rate and lick force were preserved; however, swallow timing deficits persisted. MRI revealed corresponding degenerative changes in the hypoglossal-tongue axis that were mitigated by tongue exercise. These collective findings suggest that high-repetition/low-resistance tongue exercise in our model is a safe and effective treatment to prevent/diminish signs of hypoglossal-tongue axis degeneration. The next step is to leverage our rat model to optimize exercise dosing parameters and investigate corresponding treatment mechanisms of action for future translation to MND clinical trials.

2.
Neuroscience ; 390: 303-316, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30179644

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating disease leading to degeneration of motor neurons and skeletal muscles, including those required for swallowing. Tongue weakness is one of the earliest signs of bulbar dysfunction in ALS, which is attributed to degeneration of motor neurons in the hypoglossal nucleus in the brainstem, the axons of which directly innervate the tongue. Despite its fundamental importance, dysphagia (difficulty swallowing) and strategies to preserve swallowing function have seldom been studied in ALS models. It is difficult to study dysphagia in ALS models since the amount and rate at which hypoglossal motor neuron death occurs cannot be controlled, and degeneration is not limited to the hypoglossal nucleus. Here, we report a novel experimental model using intralingual injections of cholera toxin B conjugated to saporin (CTB-SAP) to study the impact of only hypoglossal motor neuron death without the many complications that are present in ALS models. Hypoglossal motor neuron survival, swallowing function, and hypoglossal motor output were assessed in Sprague-Dawley rats after intralingual injection of either CTB-SAP (25 g) or unconjugated CTB and SAP (controls) into the genioglossus muscle. CTB-SAP treated rats exhibited significant (p ≤ 0.05) deficits vs. controls in: (1) lick rate (6.0 ±â€¯0.1 vs. 6.6 ±â€¯0.1 Hz; (2) hypoglossal motor output (0.3 ±â€¯0.05 vs. 0.6 ±â€¯0.10 mV); and (3) hypoglossal motor neuron survival (398 ±â€¯34 vs. 1018 ±â€¯41 neurons). Thus, this novel, inducible model of hypoglossal motor neuron death mimics the dysphagia phenotype that is observed in ALS rodent models, and will allow us to study strategies to preserve swallowing function.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Cholera Toxin/administration & dosage , Deglutition Disorders/pathology , Disease Models, Animal , Hypoglossal Nerve/pathology , Motor Neurons/pathology , Saporins/administration & dosage , Animals , Cell Death , Deglutition Disorders/chemically induced , Hypoglossal Nerve/drug effects , Hypoglossal Nerve/physiopathology , Male , Motor Neurons/drug effects , Motor Neurons/physiology , Rats, Sprague-Dawley , Tongue/drug effects , Tongue/innervation
SELECTION OF CITATIONS
SEARCH DETAIL