Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 6(9)2020 09.
Article in English | MEDLINE | ID: mdl-32845829

ABSTRACT

Mesorhizobium is a genus of soil bacteria, some isolates of which form an endosymbiotic relationship with diverse legumes of the Loteae tribe. The symbiotic genes of these mesorhizobia are generally carried on integrative and conjugative elements termed symbiosis islands (ICESyms). Mesorhizobium strains that nodulate Lotus spp. have been divided into host-range groupings. Group I (GI) strains nodulate L. corniculatus and L. japonicus ecotype Gifu, while group II (GII) strains have a broader host range, which includes L. pedunculatus. To identify the basis of this extended host range, and better understand Mesorhizobium and ICESym genomics, the genomes of eight Mesorhizobium strains were completed using hybrid long- and short-read assembly. Bioinformatic comparison with previously sequenced mesorhizobia genomes indicated host range was not predicted by Mesorhizobium genospecies but rather by the evolutionary relationship between ICESym symbiotic regions. Three radiating lineages of Loteae ICESyms were identified on this basis, which correlate with Lotus spp. host-range grouping and have lineage-specific nod gene complements. Pangenomic analysis of the completed GI and GII ICESyms identified 155 core genes (on average 30.1 % of a given ICESym). Individual GI or GII ICESyms carried diverse accessory genes with an average of 34.6 % of genes unique to a given ICESym. Identification and comparative analysis of NodD symbiotic regulatory motifs - nod boxes - identified 21 branches across the NodD regulons. Four of these branches were associated with seven genes unique to the five GII ICESyms. The nod boxes preceding the host-range gene nodZ in GI and GII ICESyms were disparate, suggesting regulation of nodZ may differ between GI and GII ICESyms. The broad host-range determinant(s) of GII ICESyms that confer nodulation of L. pedunculatus are likely present amongst the 53 GII-unique genes identified.


Subject(s)
Lotus/microbiology , Mesorhizobium/physiology , Plant Proteins/genetics , Whole Genome Sequencing/methods , Bacterial Proteins/genetics , Fucosyltransferases/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Mesorhizobium/classification , Symbiosis
2.
Int J Antimicrob Agents ; 54(6): 681-685, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31479739

ABSTRACT

Staphylococcus aureus is a serious human and animal pathogen. Multilocus sequence type 612 (ST612) is the dominant methicillin-resistant S. aureus (MRSA) clone in certain South African hospitals and is sporadically isolated from horses and horse-associated veterinarians in Australia. Colonisation and infection by ST612-MRSA is increasing in Western Australia. Whole-genome sequencing was performed for 51 isolates of ST612-MRSA from Western Australian patients and healthcare workers, South African hospital patients, Australian veterinarians and New South Wales horses. Core genome phylogenies suggested that Australian equine and veterinarian-associated ST612-MRSA were monophyletic. Individual Western Australian isolates grouped either with this equine-associated lineage or more diverse lineages related to those in South African hospitals. Bioinformatic analyses of the complete ST612-MRSA reference genome SVH7513 confirmed that ST612-MRSA was closely related to ST8 USA500 MRSA. Common use of rifampicin in South Africa and equine veterinarian practice may favour ST612-MRSA in these settings. Humans and horses colonised with ST612-MRSA are potential reservoirs for MRSA in Australia.


Subject(s)
Disease Reservoirs/microbiology , Horses/microbiology , Methicillin-Resistant Staphylococcus aureus/genetics , Animals , Genome, Bacterial , Humans , Phylogeny , Western Australia
3.
Article in English | MEDLINE | ID: mdl-30533881

ABSTRACT

Staphylococcus aureus is a serious pathogen of humans and animals. Multilocus sequence type 612 is dominant and highly virulent in South African hospitals but relatively uncommon elsewhere. We present the complete genome sequence of methicillin-resistant Staphylococcus aureus strain SVH7513, isolated from a horse at a veterinary clinic in New South Wales, Australia.

4.
Sci Total Environ ; 626: 1005-1011, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29898509

ABSTRACT

Urban wastewater treatment plant effluents represent one of the major emission sources of antibiotic-resistant bacteria (ARB) in natural aquatic environments. In this study, the effect of artificial solar radiation on total culturable heterotrophic bacteria and ARB (including amoxicillin-resistant, ciprofloxacin-resistant, rifampicin-resistant, sulfamethoxazole-resistant, and tetracycline-resistant bacteria) present in secondary effluent was investigated. Artificial solar radiation was effective in inactivating the majority of environmental bacteria, however, the proportion of strains with ciprofloxacin-resistance and rifampicin-resistance increased in the surviving populations. Isolates of Pseudomonas putida, Serratia marcescens, and Stenotrophomonas maltophilia nosocomial pathogens were identified as resistant to solar radiation and to at least three antibiotics. Draft genome sequencing and typing revealed isolates carrying multiple resistance genes; where S. maltophilia (resistant to all studied antibiotics) sequence type was similar to strains isolated in blood infections. Results from this study confirm that solar radiation reduces total bacterial load in secondary effluent, but may indirectly increase the relative abundance of ARB.


Subject(s)
Bacteria/radiation effects , Drug Resistance, Bacterial/genetics , Solar Energy , Waste Disposal, Fluid/methods , Wastewater/microbiology
5.
Genome Announc ; 5(21)2017 May 25.
Article in English | MEDLINE | ID: mdl-28546494

ABSTRACT

The use of halotolerant acidophiles for bioleaching provides a biotechnical approach for the extraction of metals from regions where high salinity exists in the ores and source water. Here, we describe the first draft genome of a new species of a halotolerant and iron- and sulfur-oxidizing acidophile, Acidihalobacter ferrooxidans DSM 14175 (strain V8).

6.
Genome Announc ; 5(3)2017 Jan 19.
Article in English | MEDLINE | ID: mdl-28104654

ABSTRACT

The principal genomic features of Acidihalobacter prosperus DSM 14174 (strain V6) are presented here. This is a mesophilic, halotolerant, and iron/sulfur-oxidizing acidophile that was isolated from seawater at Vulcano, Italy. It has potential for use in biomining applications in regions where high salinity exists in the source water and ores.

7.
Mob Genet Elements ; 6(4): e1208317, 2016.
Article in English | MEDLINE | ID: mdl-27583185

ABSTRACT

The horizontal gene transfer facilitated by mobile genetic elements impacts almost all areas of bacterial evolution, including the accretion and dissemination of antimicrobial-resistance genes in the human and animal pathogen Staphylococcus aureus. Genome surveys of staphylococcal plasmids have revealed an unexpected paucity of conjugation and mobilization loci, perhaps suggesting that conjugation plays only a minor role in the evolution of this genus. In this letter we present the DNA sequences of historically documented staphylococcal conjugative plasmids and highlight that at least 3 distinct and widely distributed families of conjugative plasmids currently contribute to the dissemination of antimicrobial resistance in Staphylococcus. We also review the recently documented "relaxase-in trans" mechanism of conjugative mobilization facilitated by conjugative plasmids pWBG749 and pSK41, and discuss how this may facilitate the horizontal transmission of around 90% of plasmids that were previously considered non-mobilizable. Finally, we enumerate unique sequenced S. aureus plasmids with a potential mechanism of mobilization and predict that at least 80% of all non-conjugative S. aureus plasmids are mobilizable by at least one mechanism. We suggest that a greater research focus on the molecular biology of conjugation is essential if we are to recognize gene-transfer mechanisms from our increasingly in silico analyses.

8.
Nucleic Acids Res ; 43(16): 7971-83, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26243776

ABSTRACT

Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2-3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus.


Subject(s)
DNA, Bacterial/chemistry , Drug Resistance, Bacterial/genetics , Gene Transfer, Horizontal , Plasmids/genetics , Staphylococcus aureus/genetics , Bacterial Proteins/genetics , Base Sequence , Conjugation, Genetic , Conserved Sequence , Inverted Repeat Sequences , Recombination, Genetic , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...