Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 179(1): 268-281.e13, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31495573

ABSTRACT

Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neurons in the mouse brain have been reconstructed in their entirety. Here we present a robust and efficient platform for imaging and reconstructing complete neuronal morphologies, including axonal arbors that span substantial portions of the brain. We used this platform to reconstruct more than 1,000 projection neurons in the motor cortex, thalamus, subiculum, and hypothalamus. Together, the reconstructed neurons constitute more than 85 meters of axonal length and are available in a searchable online database. Axonal shapes revealed previously unknown subtypes of projection neurons and suggest organizational principles of long-range connectivity.


Subject(s)
Brain/cytology , Brain/diagnostic imaging , Neurites/physiology , Pyramidal Tracts/physiology , Animals , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton/methods , Software , Transfection
2.
Cell Rep ; 2(4): 991-1001, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23063364

ABSTRACT

We established a collection of 7,000 transgenic lines of Drosophila melanogaster. Expression of GAL4 in each line is controlled by a different, defined fragment of genomic DNA that serves as a transcriptional enhancer. We used confocal microscopy of dissected nervous systems to determine the expression patterns driven by each fragment in the adult brain and ventral nerve cord. We present image data on 6,650 lines. Using both manual and machine-assisted annotation, we describe the expression patterns in the most useful lines. We illustrate the utility of these data for identifying novel neuronal cell types, revealing brain asymmetry, and describing the nature and extent of neuronal shape stereotypy. The GAL4 lines allow expression of exogenous genes in distinct, small subsets of the adult nervous system. The set of DNA fragments, each driving a documented expression pattern, will facilitate the generation of additional constructs for manipulating neuronal function.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Nervous System/metabolism , Transcription Factors/metabolism , Animals , Animals, Genetically Modified , Brain/metabolism , Databases, Factual , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Immunohistochemistry , Microscopy, Confocal , Transcription Factors/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...