Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
1.
Blood Adv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904477

ABSTRACT

Patients with chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL) can develop hypogammaglobulinemia, a form of secondary immune deficiency (SID), from the disease and treatments. Patients with hypogammaglobulinemia with recurrent infections may benefit from immunoglobulin replacement therapy (IgRT). This study evaluated patterns of IgG testing and the effectiveness of IgRT in real-world patients with CLL or NHL. A retrospective, longitudinal study was conducted among adult patients diagnosed with CLL or NHL. Clinical data from the Massachusetts General Brigham Research Patient Data Registry were used. IgG testing, infections, and antimicrobial use were compared before vs. 3, 6, and 12 months after IgRT initiation. Generalized estimating equation logistic regression models were used to estimate odds ratios (OR), 95% Confidence Intervals (CIs), and P-values. The study population included 17,192 patients (CLL: N=3,960; median age, 68 years; NHL: N=13,232; median age, 64 years). In the CLL and NHL cohorts, 67% and 51.2% had IgG testing and 6.5% and 4.7% received IgRT, respectively. Following IgRT initiation, the proportion of patients with hypogammaglobulinemia, the odds of infections or severe infections, and associated antimicrobial use, decreased significantly. Increased frequency of IgG testing was associated with a significantly lower likelihood of severe infection. In conclusion, in real-world patients with CLL or NHL, IgRT was associated with significant reductions in hypogammaglobulinemia, infections, severe infections, and associated antimicrobials. Optimizing IgG testing and IgRT are warranted for the comprehensive management of SID in patients with CLL or NHL.

2.
J Clin Neurosci ; 126: 128-134, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870642

ABSTRACT

OBJECTIVE: Intracranial aneurysms (IA) and aortic aneurysms (AA) are both abnormal dilations of arteries with familial predisposition and have been proposed to share co-prevalence and pathophysiology. Associations of IA and non-aortic peripheral aneurysms are less well-studied. The goal of the study was to understand the patterns of aortic and peripheral (extracranial) aneurysms in patients with IA, and risk factors associated with the development of these aneurysms. METHODS: 4701 patients were included in our retrospective analysis of all patients with intracranial aneurysms at our institution over the past 26 years. Patient demographics, comorbidities, and aneurysmal locations were analyzed. Univariate and multivariate analyses were performed to study associations with and without extracranial aneurysms. RESULTS: A total of 3.4% of patients (161 of 4701) with IA had at least one extracranial aneurysm. 2.8% had thoracic or abdominal aortic aneurysms. Age, male sex, hypertension, coronary artery disease, history of ischemic cerebral infarction, connective tissues disease, and family history of extracranial aneurysms in a 1st degree relative were associated with the presence of extracranial aneurysms and a higher number of extracranial aneurysms. In addition, family history of extracranial aneurysms in a second degree relative is associated with the presence of extracranial aneurysms and atrial fibrillation is associated with a higher number of extracranial aneurysms. CONCLUSION: Significant comorbidities are associated with extracranial aneurysms in patients with IA. Family history of extracranial aneurysms has the strongest association and suggests that IA patients with a family history of extracranial aneurysms may benefit from screening.

3.
medRxiv ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38699316

ABSTRACT

Scalable identification of patients with the post-acute sequelae of COVID-19 (PASC) is challenging due to a lack of reproducible precision phenotyping algorithms and the suboptimal accuracy, demographic biases, and underestimation of the PASC diagnosis code (ICD-10 U09.9). In a retrospective case-control study, we developed a precision phenotyping algorithm for identifying research cohorts of PASC patients, defined as a diagnosis of exclusion. We used longitudinal electronic health records (EHR) data from over 295 thousand patients from 14 hospitals and 20 community health centers in Massachusetts. The algorithm employs an attention mechanism to exclude sequelae that prior conditions can explain. We performed independent chart reviews to tune and validate our precision phenotyping algorithm. Our PASC phenotyping algorithm improves precision and prevalence estimation and reduces bias in identifying Long COVID patients compared to the U09.9 diagnosis code. Our algorithm identified a PASC research cohort of over 24 thousand patients (compared to about 6 thousand when using the U09.9 diagnosis code), with a 79.9 percent precision (compared to 77.8 percent from the U09.9 diagnosis code). Our estimated prevalence of PASC was 22.8 percent, which is close to the national estimates for the region. We also provide an in-depth analysis outlining the clinical attributes, encompassing identified lingering effects by organ, comorbidity profiles, and temporal differences in the risk of PASC. The PASC phenotyping method presented in this study boasts superior precision, accurately gauges the prevalence of PASC without underestimating it, and exhibits less bias in pinpointing Long COVID patients. The PASC cohort derived from our algorithm will serve as a springboard for delving into Long COVID's genetic, metabolomic, and clinical intricacies, surmounting the constraints of recent PASC cohort studies, which were hampered by their limited size and available outcome data.

4.
Neurology ; 102(11): e209497, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38759131

ABSTRACT

Large language models (LLMs) are advanced artificial intelligence (AI) systems that excel in recognizing and generating human-like language, possibly serving as valuable tools for neurology-related information tasks. Although LLMs have shown remarkable potential in various areas, their performance in the dynamic environment of daily clinical practice remains uncertain. This article outlines multiple limitations and challenges of using LLMs in clinical settings that need to be addressed, including limited clinical reasoning, variable reliability and accuracy, reproducibility bias, self-serving bias, sponsorship bias, and potential for exacerbating health care disparities. These challenges are further compounded by practical business considerations and infrastructure requirements, including associated costs. To overcome these hurdles and harness the potential of LLMs effectively, this article includes considerations for health care organizations, researchers, and neurologists contemplating the use of LLMs in clinical practice. It is essential for health care organizations to cultivate a culture that welcomes AI solutions and aligns them seamlessly with health care operations. Clear objectives and business plans should guide the selection of AI solutions, ensuring they meet organizational needs and budget considerations. Engaging both clinical and nonclinical stakeholders can help secure necessary resources, foster trust, and ensure the long-term sustainability of AI implementations. Testing, validation, training, and ongoing monitoring are pivotal for successful integration. For neurologists, safeguarding patient data privacy is paramount. Seeking guidance from institutional information technology resources for informed, compliant decisions, and remaining vigilant against biases in LLM outputs are essential practices in responsible and unbiased utilization of AI tools. In research, obtaining institutional review board approval is crucial when dealing with patient data, even if deidentified, to ensure ethical use. Compliance with established guidelines like SPIRIT-AI, MI-CLAIM, and CONSORT-AI is necessary to maintain consistency and mitigate biases in AI research. In summary, the integration of LLMs into clinical neurology offers immense promise while presenting formidable challenges. Awareness of these considerations is vital for harnessing the potential of AI in neurologic care effectively and enhancing patient care quality and safety. The article serves as a guide for health care organizations, researchers, and neurologists navigating this transformative landscape.


Subject(s)
Artificial Intelligence , Neurology , Humans , Neurology/standards , Quality of Health Care
5.
Res Sq ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38746290

ABSTRACT

Estimates of post-acute sequelae of SARS-CoV-2 infection (PASC) incidence, also known as Long COVID, have varied across studies and changed over time. We estimated PASC incidence among adult and pediatric populations in three nationwide research networks of electronic health records (EHR) participating in the RECOVER Initiative using different classification algorithms (computable phenotypes). Overall, 7% of children and 8.5%-26.4% of adults developed PASC, depending on computable phenotype used. Excess incidence among SARS-CoV-2 patients was 4% in children and ranged from 4-7% among adults, representing a lower-bound incidence estimation based on two control groups - contemporary COVID-19 negative and historical patients (2019). Temporal patterns were consistent across networks, with peaks associated with introduction of new viral variants. Our findings indicate that preventing and mitigating Long COVID remains a public health priority. Examining temporal patterns and risk factors of PASC incidence informs our understanding of etiology and can improve prevention and management.

6.
Eur J Immunol ; 54(6): e2350548, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634287

ABSTRACT

Transforming growth factor beta (TGF-ß) signaling is essential for a balanced immune response by mediating the development and function of regulatory T cells (Tregs) and suppressing autoreactive T cells. Disruption of this balance can result in autoimmune diseases, including multiple sclerosis (MS). MicroRNAs (miRNAs) targeting TGF-ß signaling have been shown to be upregulated in naïve CD4 T cells in MS patients, resulting in a limited in vitro generation of human Tregs. Utilizing the murine model experimental autoimmune encephalomyelitis, we show that perinatal administration of miRNAs, which target the TGF-ß signaling pathway, enhanced susceptibility to central nervous system (CNS) autoimmunity. Neonatal mice administered with these miRNAs further exhibited reduced Treg frequencies with a loss in T cell receptor repertoire diversity following the induction of experimental autoimmune encephalomyelitis in adulthood. Exacerbated CNS autoimmunity as a result of miRNA overexpression in CD4 T cells was accompanied by enhanced Th1 and Th17 cell frequencies. These findings demonstrate that increased levels of TGF-ß-associated miRNAs impede the development of a diverse Treg population, leading to enhanced effector cell activity, and contributing to an increased susceptibility to CNS autoimmunity. Thus, TGF-ß-targeting miRNAs could be a risk factor for MS, and recovering optimal TGF-ß signaling may restore immune homeostasis in MS patients.


Subject(s)
Autoimmunity , Central Nervous System , Encephalomyelitis, Autoimmune, Experimental , MicroRNAs , Multiple Sclerosis , Signal Transduction , T-Lymphocytes, Regulatory , Th17 Cells , Transforming Growth Factor beta , MicroRNAs/genetics , MicroRNAs/immunology , Animals , T-Lymphocytes, Regulatory/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Transforming Growth Factor beta/metabolism , Mice , Signal Transduction/immunology , Autoimmunity/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/genetics , Humans , Central Nervous System/immunology , Th17 Cells/immunology , Mice, Inbred C57BL , Th1 Cells/immunology , Cell Differentiation/immunology , Female
7.
Appl Clin Inform ; 15(2): 250-264, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359876

ABSTRACT

BACKGROUND: Timelines have been used for patient review. While maintaining a compact overview is important, merged event representations caused by the intricate and voluminous patient data bring event recognition, access ambiguity, and inefficient interaction problems. Handling large patient data efficiently is another challenge. OBJECTIVE: This study aims to develop a scalable, efficient timeline to enhance patient review for research purposes. The focus is on addressing the challenges presented by the intricate and voluminous patient data. METHODS: We propose a high-throughput, space-efficient HistoriView timeline for an individual patient. For a compact overview, it uses nonstacking event representation. An overlay detection algorithm, y-shift visualization, and popup-based interaction facilitate comprehensive analysis of overlapping datasets. An i2b2 HistoriView plugin was deployed, using split query and event reduction approaches, delivering the entire history efficiently without losing information. For evaluation, 11 participants completed a usability survey and a preference survey, followed by qualitative feedback. To evaluate scalability, 100 randomly selected patients over 60 years old were tested on the plugin and were compared with a baseline visualization. RESULTS: Most participants found that HistoriView was easy to use and learn and delivered information clearly without zooming. All preferred HistoriView over a stacked timeline. They expressed satisfaction on display, ease of learning and use, and efficiency. However, challenges and suggestions for improvement were also identified. In the performance test, the largest patient had 32,630 records, which exceeds the baseline limit. HistoriView reduced it to 2,019 visual artifacts. All patients were pulled and visualized within 45.40 seconds. Visualization took less than 3 seconds for all. DISCUSSION AND CONCLUSION: HistoriView allows complete data exploration without exhaustive interactions in a compact overview. It is useful for dense data or iterative comparisons. However, issues in exploring subconcept records were reported. HistoriView handles large patient data preserving original information in a reasonable time.


Subject(s)
Algorithms , Learning , Humans , Middle Aged , Personal Satisfaction , Patients
8.
J Neuroimmunol ; 387: 578282, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38183947

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease characterized by infiltration of autoreactive T cells into the central nervous system (CNS). In order to understand how activated, autoreactive T cells are able to cross the blood brain barrier, the unique molecular characteristics of pathogenic T cells need to be more thoroughly examined. In previous work, our laboratory found autotaxin (ATX) to be upregulated by activated autoreactive T cells in the mouse model of MS. ATX is a secreted glycoprotein that promotes T cell chemokinesis and transmigration through catalysis of lysophoshphatidic acid (LPA). ATX is elevated in the serum of MS patients during active disease phases, and we previously found that inhibiting ATX decreases severity of neurological deficits in the mouse model. In this study, ATX expression was found to be lower in MS patient immune cells during rest, but significantly increased during early activation in a manner not seen in healthy controls. The ribosomal binding protein HuR, which stabilizes ATX mRNA, was also increased in MS patients in a similar pattern to that of ATX, suggesting it may be helping regulate ATX levels after activation. The proinflammatory cytokine interleukin-23 (IL-23) was shown to induce prolonged ATX expression in MS patient Th1 and Th17 cells. Finally, through ChIP, re-ChIP analysis, we show that IL-23 may be signaling through pSTAT3/pSTAT4 heterodimers to induce expression of ATX. Taken together, these findings elucidate cell types that may be contributing to elevated serum ATX levels in MS patients and identify potential drivers of sustained expression in encephalitogenic T cells.


Subject(s)
Multiple Sclerosis , Animals , Mice , Humans , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Central Nervous System/metabolism , Disease Models, Animal , Cytokines , Interleukin-23 , Lysophospholipids/genetics , Lysophospholipids/pharmacology
9.
Eur J Immunol ; 54(1): e2350561, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37850588

ABSTRACT

Multiple sclerosis (MS) is an immune-mediated inflammatory disease of the CNS. A defining characteristic of MS is the ability of autoreactive T lymphocytes to cross the blood-brain barrier and mediate inflammation within the CNS. Previous work from our lab found the gene Enpp2 to be highly upregulated in murine encephalitogenic T cells. Enpp2 encodes for the protein autotaxin, a secreted glycoprotein that catalyzes the production of lysophosphatidic acid and promotes transendothelial migration of T cells from the bloodstream into the lymphatic system. The present study sought to characterize autotaxin expression in T cells during CNS autoimmune disease and determine its potential therapeutic value. Myelin-activated CD4 T cells upregulated expression of autotaxin in vitro, and ex vivo analysis of CNS-infiltrating CD4 T cells showed significantly higher autotaxin expression compared with cells from healthy mice. In addition, inhibiting autotaxin in myelin-specific T cells reduced their encephalitogenicity in adoptive transfer studies and decreased in vitro cell motility. Importantly, using two mouse models of MS, treatment with an autotaxin inhibitor ameliorated EAE severity, decreased the number of CNS infiltrating T and B cells, and suppressed relapses, suggesting autotaxin may be a promising therapeutic target in the treatment of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Mice , Blood-Brain Barrier , CD4-Positive T-Lymphocytes , Central Nervous System , Mice, Inbred C57BL , Multiple Sclerosis/therapy , Multiple Sclerosis/metabolism
11.
EClinicalMedicine ; 64: 102210, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37745021

ABSTRACT

Background: Characterizing Post-Acute Sequelae of COVID (SARS-CoV-2 Infection), or PASC has been challenging due to the multitude of sub-phenotypes, temporal attributes, and definitions. Scalable characterization of PASC sub-phenotypes can enhance screening capacities, disease management, and treatment planning. Methods: We conducted a retrospective multi-centre observational cohort study, leveraging longitudinal electronic health record (EHR) data of 30,422 patients from three healthcare systems in the Consortium for the Clinical Characterization of COVID-19 by EHR (4CE). From the total cohort, we applied a deductive approach on 12,424 individuals with follow-up data and developed a distributed representation learning process for providing augmented definitions for PASC sub-phenotypes. Findings: Our framework characterized seven PASC sub-phenotypes. We estimated that on average 15.7% of the hospitalized COVID-19 patients were likely to suffer from at least one PASC symptom and almost 5.98%, on average, had multiple symptoms. Joint pain and dyspnea had the highest prevalence, with an average prevalence of 5.45% and 4.53%, respectively. Interpretation: We provided a scalable framework to every participating healthcare system for estimating PASC sub-phenotypes prevalence and temporal attributes, thus developing a unified model that characterizes augmented sub-phenotypes across the different systems. Funding: Authors are supported by National Institute of Allergy and Infectious Diseases, National Institute on Aging, National Center for Advancing Translational Sciences, National Medical Research Council, National Institute of Neurological Disorders and Stroke, European Union, National Institutes of Health, National Center for Advancing Translational Sciences.

12.
Am J Respir Crit Care Med ; 208(10): 1088-1100, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37647574

ABSTRACT

Rationale: Patients with chronic obstructive pulmonary disease (COPD) and type 2 diabetes (T2D) have worse clinical outcomes compared with patients without metabolic dysregulation. GLP-1 (glucagon-like peptide 1) receptor agonists (GLP-1RAs) reduce asthma exacerbation risk and improve FVC in patients with COPD. Objectives: To determine whether GLP-1RA use is associated with reduced COPD exacerbation rates, and severe and moderate exacerbation risk, compared with other T2D therapies. Methods: A retrospective, observational, electronic health records-based study was conducted using an active comparator, new-user design of 1,642 patients with COPD in a U.S. health system from 2012 to 2022. The COPD cohort was identified using a previously validated machine learning algorithm that includes a natural language processing tool. Exposures were defined as prescriptions for GLP-1RAs (reference group), DPP-4 (dipeptidyl peptidase 4) inhibitors (DPP-4is), SGLT2 (sodium-glucose cotransporter 2) inhibitors, or sulfonylureas. Measurements and Main Results: Unadjusted COPD exacerbation counts were lower in GLP-1RA users. Adjusted exacerbation rates were significantly higher in DPP-4i (incidence rate ratio, 1.48 [95% confidence interval, 1.08-2.04]; P = 0.02) and sulfonylurea (incidence rate ratio, 2.09 [95% confidence interval, 1.62-2.69]; P < 0.0001) users compared with GLP-1RA users. GLP-1RA use was also associated with significantly reduced risk of severe exacerbations compared with DPP-4i and sulfonylurea use, and of moderate exacerbations compared with sulfonylurea use. After adjustment for clinical covariates, moderate exacerbation risk was also lower in GLP-1RA users compared with DPP-4i users. No statistically significant difference in exacerbation outcomes was seen between GLP-1RA and SGLT2 inhibitor users. Conclusions: Prospective studies of COPD exacerbations in patients with comorbid T2D are warranted. Additional research may elucidate the mechanisms underlying these observed associations with T2D medications.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Pulmonary Disease, Chronic Obstructive , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Glucagon-Like Peptide-1 Receptor Agonists , Retrospective Studies , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Prospective Studies , Sulfonylurea Compounds/therapeutic use , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/chemically induced
13.
J Am Med Inform Assoc ; 30(12): 1985-1994, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37632234

ABSTRACT

OBJECTIVE: Patients who receive most care within a single healthcare system (colloquially called a "loyalty cohort" since they typically return to the same providers) have mostly complete data within that organization's electronic health record (EHR). Loyalty cohorts have low data missingness, which can unintentionally bias research results. Using proxies of routine care and healthcare utilization metrics, we compute a per-patient score that identifies a loyalty cohort. MATERIALS AND METHODS: We implemented a computable program for the widely adopted i2b2 platform that identifies loyalty cohorts in EHRs based on a machine-learning model, which was previously validated using linked claims data. We developed a novel validation approach, which tests, using only EHR data, whether patients returned to the same healthcare system after the training period. We evaluated these tools at 3 institutions using data from 2017 to 2019. RESULTS: Loyalty cohort calculations to identify patients who returned during a 1-year follow-up yielded a mean area under the receiver operating characteristic curve of 0.77 using the original model and 0.80 after calibrating the model at individual sites. Factors such as multiple medications or visits contributed significantly at all sites. Screening tests' contributions (eg, colonoscopy) varied across sites, likely due to coding and population differences. DISCUSSION: This open-source implementation of a "loyalty score" algorithm had good predictive power. Enriching research cohorts by utilizing these low-missingness patients is a way to obtain the data completeness necessary for accurate causal analysis. CONCLUSION: i2b2 sites can use this approach to select cohorts with mostly complete EHR data.


Subject(s)
Algorithms , Electronic Health Records , Humans , Machine Learning , Delivery of Health Care , Electronics
14.
PLOS Digit Health ; 2(7): e0000301, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37490472

ABSTRACT

Physical and psychological symptoms lasting months following an acute COVID-19 infection are now recognized as post-acute sequelae of COVID-19 (PASC). Accurate tools for identifying such patients could enhance screening capabilities for the recruitment for clinical trials, improve the reliability of disease estimates, and allow for more accurate downstream cohort analysis. In this retrospective cohort study, we analyzed the EHR of hospitalized COVID-19 patients across three healthcare systems to develop a pipeline for better identifying patients with persistent PASC symptoms (dyspnea, fatigue, or joint pain) after their SARS-CoV-2 infection. We implemented distributed representation learning powered by the Machine Learning for modeling Health Outcomes (MLHO) to identify novel EHR features that could suggest PASC symptoms outside of typical diagnosis codes. MLHO applies an entropy-based feature selection and boosting algorithms for representation mining. These improved definitions were then used for estimating PASC among hospitalized patients. 30,422 hospitalized patients were diagnosed with COVID-19 across three healthcare systems between March 13, 2020 and February 28, 2021. The mean age of the population was 62.3 years (SD, 21.0 years) and 15,124 (49.7%) were female. We implemented the distributed representation learning technique to augment PASC definitions. These definitions were found to have positive predictive values of 0.73, 0.74, and 0.91 for dyspnea, fatigue, and joint pain, respectively. We estimated that 25 percent (CI 95%: 6-48), 11 percent (CI 95%: 6-15), and 13 percent (CI 95%: 8-17) of hospitalized COVID-19 patients will have dyspnea, fatigue, and joint pain, respectively, 3 months or longer after a COVID-19 diagnosis. We present a validated framework for screening and identifying patients with PASC in the EHR and then use the tool to estimate its prevalence among hospitalized COVID-19 patients.

15.
Cell Death Dis ; 14(7): 470, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495596

ABSTRACT

Rectal cancer ranks as the second leading cause of cancer-related deaths. Neoadjuvant therapy for rectal cancer patients often results in individuals that respond well to therapy and those that respond poorly, requiring life-altering excision surgery. It is inadequately understood what dictates this responder/nonresponder divide. Our major aim is to identify what factors in the tumor microenvironment drive a fraction of rectal cancer patients to respond to radiotherapy. We also sought to distinguish potential biomarkers that would indicate a positive response to therapy and design combinatorial therapeutics to enhance radiotherapy efficacy. To address this, we developed an orthotopic murine model of rectal cancer treated with short course radiotherapy that recapitulates the bimodal response observed in the clinic. We utilized a robust combination of transcriptomics and protein analysis to identify differences between responding and nonresponding tumors. Our mouse model recapitulates human disease in which a fraction of tumors respond to radiotherapy (responders) while the majority are nonresponsive. We determined that responding tumors had increased damage-induced cell death, and a unique immune-activation signature associated with tumor-associated macrophages, cancer-associated fibroblasts, and CD8+ T cells. This signature was dependent on radiation-induced increases of Type I Interferons (IFNs). We investigated a therapeutic approach targeting the cGAS/STING pathway and demonstrated improved response rate following radiotherapy. These results suggest that modulating the Type I IFN pathway has the potential to improve radiation therapy efficacy in RC.


Subject(s)
Interferon Type I , Rectal Neoplasms , Humans , Animals , Mice , CD8-Positive T-Lymphocytes/pathology , Rectal Neoplasms/genetics , Rectal Neoplasms/radiotherapy , Treatment Outcome , Neoadjuvant Therapy/methods , Tumor Microenvironment
16.
JAMIA Open ; 6(2): ooad032, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37181728

ABSTRACT

With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs.

17.
EBioMedicine ; 92: 104629, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37247495

ABSTRACT

BACKGROUND: Alzheimer's Disease (AD) is a complex clinical phenotype with unprecedented social and economic tolls on an ageing global population. Real-world data (RWD) from electronic health records (EHRs) offer opportunities to accelerate precision drug development and scale epidemiological research on AD. A precise characterization of AD cohorts is needed to address the noise abundant in RWD. METHODS: We conducted a retrospective cohort study to develop and test computational models for AD cohort identification using clinical data from 8 Massachusetts healthcare systems. We mined temporal representations from EHR data using the transitive sequential pattern mining algorithm (tSPM) to train and validate our models. We then tested our models against a held-out test set from a review of medical records to adjudicate the presence of AD. We trained two classes of Machine Learning models, using Gradient Boosting Machine (GBM), to compare the utility of AD diagnosis records versus the tSPM temporal representations (comprising sequences of diagnosis and medication observations) from electronic medical records for characterizing AD cohorts. FINDINGS: In a group of 4985 patients, we identified 219 tSPM temporal representations (i.e., transitive sequences) of medical records for constructing the best classification models. The models with sequential features improved AD classification by a magnitude of 3-16 percent over the use of AD diagnosis codes alone. The computed cohort included 663 patients, 35 of whom had no record of AD. Six groups of tSPM sequences were identified for characterizing the AD cohorts. INTERPRETATION: We present sequential patterns of diagnosis and medication codes from electronic medical records, as digital markers of Alzheimer's Disease. Classification algorithms developed on sequential patterns can replace standard features from EHRs to enrich phenotype modelling. FUNDING: National Institutes of Health: the National Institute on Aging (RF1AG074372) and the National Institute of Allergy and Infectious Diseases (R01AI165535).


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Retrospective Studies , Algorithms , Machine Learning , Electronic Health Records
18.
Res Sq ; 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37090639

ABSTRACT

Rectal cancer ranks as the second leading cause of cancer-related deaths. Neoadjuvant therapy for rectal cancer patients often results in individuals that respond well to therapy and those that respond poorly, requiring life-altering excision surgery. It is inadequately understood what dictates this responder/nonresponder divide. Our major aim is to identify what factors in the tumor microenvironment drive a fraction of rectal cancer patients to respond to radiotherapy. We also sought to distinguish potential biomarkers that would indicate a positive response to therapy and design combinatorial therapeutics to enhance radiotherapy efficacy. To address this, we developed an orthotopic murine model of rectal cancer treated with short course radiotherapy that recapitulates the bimodal response observed in the clinic. We utilized a robust combination of transcriptomics and protein analysis to identify differences between responding and nonresponding tumors. Our mouse model recapitulates human disease in which a fraction of tumors respond to radiotherapy (responders) while the majority are nonresponsive. We determined that responding tumors had increased damage-induced cell death, and a unique immune-activation signature associated with tumor-associated macrophages, cancer-associated fibroblasts, and CD8 + T cells. This signature was dependent on radiation-induced increases of Type I interferons (IFNs). We investigated a therapeutic approach targeting the cGAS/STING pathway and demonstrated improved response rate following radiotherapy. These results suggest that modulating the Type I IFN pathway has the potential to improve radiation therapy efficacy in RC.

19.
JAMA Netw Open ; 6(4): e238203, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37052921

ABSTRACT

This cohort study uses hospitalization and 30-day mortality risks to create a temporal profile of the severity of COVID-19 in Massachusetts from July 2021 to December 2022.


Subject(s)
COVID-19 , Humans , Massachusetts/epidemiology , SARS-CoV-2
20.
Sci Rep ; 13(1): 1971, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737471

ABSTRACT

The electronic Medical Records and Genomics (eMERGE) Network assessed the feasibility of deploying portable phenotype rule-based algorithms with natural language processing (NLP) components added to improve performance of existing algorithms using electronic health records (EHRs). Based on scientific merit and predicted difficulty, eMERGE selected six existing phenotypes to enhance with NLP. We assessed performance, portability, and ease of use. We summarized lessons learned by: (1) challenges; (2) best practices to address challenges based on existing evidence and/or eMERGE experience; and (3) opportunities for future research. Adding NLP resulted in improved, or the same, precision and/or recall for all but one algorithm. Portability, phenotyping workflow/process, and technology were major themes. With NLP, development and validation took longer. Besides portability of NLP technology and algorithm replicability, factors to ensure success include privacy protection, technical infrastructure setup, intellectual property agreement, and efficient communication. Workflow improvements can improve communication and reduce implementation time. NLP performance varied mainly due to clinical document heterogeneity; therefore, we suggest using semi-structured notes, comprehensive documentation, and customization options. NLP portability is possible with improved phenotype algorithm performance, but careful planning and architecture of the algorithms is essential to support local customizations.


Subject(s)
Electronic Health Records , Natural Language Processing , Genomics , Algorithms , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL