Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Epigenomics ; 10(7): 1011-1026, 2018 07.
Article in English | MEDLINE | ID: mdl-29957030

ABSTRACT

AIM: Imprinted genes exhibit expression in a parent-of-origin-dependent manner and are critical for child development. Recent limited evidence suggests that prenatal exposure to phthalates, ubiquitous endocrine disruptors, can affect their epigenetic dysregulation. MATERIALS & METHODS: We quantified DNA methylation of nine imprinted gene differentially methylated regions by pyrosequencing in 296 cord blood DNA samples in a Mexican-American cohort. Fetal exposure was estimated by phthalate metabolite concentrations in maternal urine samples during pregnancy. RESULTS: Several differentially methylated regions of imprinted genes were associated with high molecular weight phthalates. The most consistent, positive, and false discovery rate significant associations were observed for MEG3. CONCLUSION: Phthalate exposure in utero may affect methylation status of imprinted genes in newborn children.


Subject(s)
DNA Methylation , Endocrine Disruptors/toxicity , Genomic Imprinting , Maternal Exposure , Phthalic Acids/toxicity , Cohort Studies , Endocrine Disruptors/urine , Female , Fetal Blood , Humans , Infant, Newborn , Male , Mexican Americans , Phthalic Acids/urine , Pregnancy , Sequence Analysis, DNA
2.
J Pediatr ; 161(1): 31-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22341586

ABSTRACT

OBJECTIVE: To determine whether aberrant DNA methylation at differentially methylated regions (DMRs) regulating insulin-like growth factor 2 (IGF2) expression in umbilical cord blood is associated with overweight or obesity in a multiethnic cohort. STUDY DESIGN: Umbilical cord blood leukocytes of 204 infants born between 2005 and 2009 in Durham, North Carolina, were analyzed for DNA methylation at two IGF2 DMRs by using pyrosequencing. Anthropometric and feeding data were collected at age 1 year. Methylation differences were compared between children >85th percentile of the Centers for Disease Control and Prevention growth charts weight-for-age (WFA) and children ≤ 85th percentile of WFA at 1 year by using generalized linear models, adjusting for post-natal caloric intake, maternal cigarette smoking, and race/ethnicity. RESULTS: The methylation percentages at the H19 imprint center DMR was higher in infants with WFA >85th percentile (62.7%; 95% CI, 59.9%-65.5%) than in infants with WFA ≤ 85th percentile (59.3%; 95% CI, 58.2%-60.3%; P = .02). At the intragenic IGF2 DMR, methylation levels were comparable between infants with WFA ≤ 85th percentile and infants with WFA >85th percentile. CONCLUSIONS: Our findings suggest that IGF2 plasticity may be mechanistically important in early childhood overweight or obese status. If confirmed in larger studies, these findings suggest aberrant DNA methylation at sequences regulating imprinted genes may be useful identifiers of children at risk for the development of early obesity.


Subject(s)
DNA Methylation , Insulin-Like Growth Factor II/genetics , Obesity/genetics , Overweight/genetics , Female , Humans , Infant , Male , Prospective Studies , Risk
SELECTION OF CITATIONS
SEARCH DETAIL