Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Exp Physiol ; 105(12): 2178-2189, 2020 12.
Article in English | MEDLINE | ID: mdl-32965751

ABSTRACT

NEW FINDINGS: What is the central question of the study? Is Vps34 a nutrient-sensitive activator of mTORC1 in human skeletal muscle? What is the main finding and its importance? We show that altering nutrient availability, via protein-carbohydrate feeding, does not increase Vps34 kinase activity in human skeletal muscle. Instead, feeding increased Vps34-mTORC1 co-localization in parallel to increased mTORC1 activity. These findings may have important implications in the understanding nutrient-induced mTORC1 activation in skeletal muscle via interaction with Vps34. ABSTRACT: The Class III PI3Kinase, Vps34, has recently been proposed as a nutrient sensor, essential for activation of the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1). We therefore investigated the effects of increasing nutrient availability through protein-carbohydrate (PRO-CHO) feeding on Vps34 kinase activity and cellular localization in human skeletal muscle. Eight young, healthy males (21 ± 0.5 yrs, 77.7 ± 9.9 kg, 25.9 ± 2.7 kg/m2 , mean ± SD) ingested a PRO-CHO beverage containing 20/44/1 g PRO/CHO/FAT respectively, with skeletal muscle biopsies obtained at baseline and 1 h and 3 h post-feeding. PRO-CHO feeding did not alter Vps34 kinase activity, but did stimulate Vps34 translocation toward the cell periphery (PRE (mean ± SD) - 0.273 ± 0.040, 1 h - 0.348 ± 0.061, Pearson's Coefficient (r)) where it co-localized with mTOR (PRE - 0.312 ± 0.040, 1 h - 0.348 ± 0.069, Pearson's Coefficient (r)). These alterations occurred in parallel to an increase in S6K1 kinase activity (941 ± 466% of PRE at 1 h post-feeding). Subsequent in vitro experiments in C2C12 and human primary myotubes displayed no effect of the Vps34-specific inhibitor SAR405 on mTORC1 signalling responses to elevated nutrient availability. Therefore, in summary, PRO-CHO ingestion does not increase Vps34 activity in human skeletal muscle, whilst pharmacological inhibition of Vps34 does not prevent nutrient stimulation of mTORC1 in vitro. However, PRO-CHO ingestion promotes Vps34 translocation to the cell periphery, enabling Vps34 to associate with mTOR. Therefore, our data suggests that interaction between Vps34 and mTOR, rather than changes in Vps34 activity per se may be involved in PRO-CHO activation of mTORC1 in human skeletal muscle.


Subject(s)
Carbohydrates/administration & dosage , Class III Phosphatidylinositol 3-Kinases/metabolism , Eating/physiology , Muscle, Skeletal/metabolism , Adult , Animals , Cell Line , Humans , Male , Mice , Middle Aged , Muscle Fibers, Skeletal/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism , Young Adult
2.
Sci Rep ; 9(1): 12891, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31501494

ABSTRACT

Room temperature Cold Atmospheric Plasma (CAP) has shown promising efficacy for the treatment of cancer but the exact mechanisms of action remain unclear. Both apoptosis and necrosis have been implicated as the mode of cell death in various cancer cells. We have previously demonstrated a caspase-independent mechanism of cell death in p53-mutated glioblastoma multiforme (GBM) cells exposed to plasma. The purpose of this study was to elucidate the molecular mechanisms involved in caspase-independent cell death induced by plasma treatment. We demonstrate that plasma induces rapid cell death in GBM cells, independent of caspases. Accumulation of vesicles was observed in plasma treated cells that stained positive with acridine orange. Western immunoblotting confirmed that autophagy is not activated following plasma treatment. Acridine orange intensity correlates closely with the lysosomal marker Lyso TrackerTM Deep Red. Further investigation using isosurface visualisation of confocal imaging confirmed that lysosomal accumulation occurs in plasma treated cells. The accumulation of lysosomes was associated with concomitant cell death following plasma treatment. In conclusion, we observed rapid accumulation of acidic vesicles and cell death following CAP treatment in GBM cells. We found no evidence that either apoptosis or autophagy, however, determined that a rapid accumulation of late stage endosomes/lysosomes precedes membrane permeabilisation, mitochondrial membrane depolarisation and caspase independent cell death.


Subject(s)
Glioblastoma/pathology , Lysosomes/metabolism , Plasma Gases/pharmacology , Autophagy/drug effects , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Lysosomes/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Signal Transduction/drug effects
3.
J Cereb Blood Flow Metab ; 39(6): 1111-1121, 2019 06.
Article in English | MEDLINE | ID: mdl-29260627

ABSTRACT

Nitrones (e.g. α-phenyl-N-tert-butyl nitrone; PBN) are cerebroprotective in experimental stroke. Free radical trapping is their proposed mechanism. As PBN has low radical trapping potency, we tested Sgk1 induction as another possible mechanism. PBN was injected (100 mg/kg, i.p.) into adult male rats and mice. Sgk1 was quantified in cerebral tissue by microarray, quantitative RT-PCR and western analyses. Sgk1+/+ and Sgk1-/- mice were randomized to receive PBN or saline immediately following transient (60 min) occlusion of the middle cerebral artery. Neurological deficit was measured at 24 h and 48 h and infarct volume at 48 h post-occlusion. Following systemic PBN administration, rapid induction of Sgk1 was detected by microarray (at 4 h) and confirmed by RT-PCR and phosphorylation of the Sgk1-specific substrate NDRG1 (at 6 h). PBN-treated Sgk1+/+ mice had lower neurological deficit ( p < 0.01) and infarct volume ( p < 0.01) than saline-treated Sgk1+/+ mice. PBN-treated Sgk1-/- mice did not differ from saline-treated Sgk1-/- mice. Saline-treated Sgk1-/- and Sgk1+/+ mice did not differ. Brain Sgk3:Sgk1 mRNA ratio was 1.0:10.6 in Sgk1+/+ mice. Sgk3 was not augmented in Sgk1-/- mice. We conclude that acute systemic treatment with PBN induces Sgk1 in brain tissue. Sgk1 may play a part in PBN-dependent actions in acute brain ischemia.


Subject(s)
Cyclic N-Oxides/therapeutic use , Immediate-Early Proteins/drug effects , Protein Serine-Threonine Kinases/drug effects , Animals , Brain/metabolism , Brain Ischemia/drug therapy , Cyclic N-Oxides/pharmacology , Immediate-Early Proteins/genetics , Immediate-Early Proteins/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Male , Mice , Mice, Knockout , Nitrogen Oxides/pharmacology , Nitrogen Oxides/therapeutic use , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/pharmacology , Rats , Stroke/drug therapy , Transcriptional Activation/drug effects
4.
Cancers (Basel) ; 10(6)2018 May 30.
Article in English | MEDLINE | ID: mdl-29848950

ABSTRACT

This special issue on mammalian target of rapamycin (mTOR) explores the importance of mTOR in cell growth control and cancer. Cancer cells often exploit mTOR as a mechanism to enhance their capacity to grow. While protein synthesis is by far the best-characterized mTOR-driven process, this special issue also describes a wider array of mTOR-driven biological processes that cancer cells benefit from, including autophagy, cell cycle control, metabolic transformation, angiogenic signaling, and anabolic processes such as nucleotide biosynthesis and ribosomal biogenesis. Other areas of mTOR signaling covered in these reviews delve into cell migration, inflammation, and regulation of transcription factors linked to cancer progression.

5.
Cancers (Basel) ; 10(1)2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29301334

ABSTRACT

Throughout the years, research into signalling pathways involved in cancer progression has led to many discoveries of which mechanistic target of rapamycin (mTOR) is a key player. mTOR is a master regulator of cell growth control. mTOR is historically known to promote cell growth by enhancing the efficiency of protein translation. Research in the last decade has revealed that mTOR's role in promoting cell growth is much more multifaceted. While mTOR is necessary for normal human physiology, cancer cells take advantage of mTOR signalling to drive their neoplastic growth and progression. Oncogenic signal transduction through mTOR is a common occurrence in cancer, leading to metabolic transformation, enhanced proliferative drive and increased metastatic potential through neovascularisation. This review focuses on the downstream mTOR-regulated processes that are implicated in the "hallmarks" of cancer with focus on mTOR's involvement in proliferative signalling, metabolic reprogramming, angiogenesis and metastasis.

6.
Essays Biochem ; 61(6): 561-563, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29233868

ABSTRACT

Essays in Biochemistry volume 61 (issue 6), entitled Signalling Mechanisms in Autophagy, covers a range of topics in autophagy signalling, touching on emerging new details on the mechanisms of autophagy regulation, novel aspects of selective autophagy and how autophagy functions in organelle homeostasis. It also looks at how autophagy research is leading to better understanding of human disease and plant biology that can be exploited for the benefit of society.


Subject(s)
Autophagy/physiology , Animals , Autophagy/genetics , Homeostasis/genetics , Homeostasis/physiology , Humans , Organelles/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
7.
Nutr Cancer ; 68(5): 818-26, 2016 07.
Article in English | MEDLINE | ID: mdl-27176674

ABSTRACT

The potential anticancer properties of garlic (Allium sativum) may depend on the method of preparation and its storage. Storage of garlic has not been thoroughly investigated to determine whether anticancer properties are retained. Garlic was prepared and processed to mimic normal options for storage and preparation for consumption. Cytotoxicity was determined by crystal violet assay and mechanisms of cytotoxicity were established by microscopy, SDS-PAGE, and Western immunoblotting. Significant (P < 0.0001) cytotoxicity was observed in all preparations, except with boiled (cooked) garlic. Depending on the method of storage, garlic extract induced either type I or type II programmed cell death, detectable by caspase 9 cleavage, or Poly (adenosine diphosphate-ribose) polymerase (PARP) cleavage and LC3-II accumulation, respectively. The conflicting literature on the anticancer properties of garlic may be explained by differences in processing and storage. This study has highlighted that the potency of the antiproliferative properties of cooked garlic, compared to the uncooked form, is diminished in HeLa cells.


Subject(s)
Apoptosis/drug effects , Garlic/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Caspase 9/genetics , Caspase 9/metabolism , Cell Proliferation/drug effects , Cooking , Food Storage , HeLa Cells , Hot Temperature , Humans
8.
Bioorg Med Chem Lett ; 25(19): 4287-92, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26318998

ABSTRACT

Mutations in the Ras-pathway occur in 40-45% of colorectal cancer patients and these are refractory to treatment with anti-EGFR-targeted therapies. With this in mind, we have studied novel guanidinium-based compounds with demonstrated ability to inhibit protein kinases. We have performed docking studies with several proteins involved in the Ras-pathway and evaluated 3,4'-bis-guanidinium derivatives as inhibitors of B-Raf. Compound 3, the most potent in this series, demonstrated strong cytotoxicity in (WT)B-Raf colorectal cancer cells and also cells with (V600E)B-Raf mutations. Cell death was induced by apoptosis, detected by cleavage of PARP. Compound 3 also potently inhibited ERK1/2 signalling, inhibited EGFR activation, as well as Src, STAT3 and AKT phosphorylation. Mechanistically, compound 3 did not inhibit ATP binding to B-Raf, but direct assay of B-Raf activity was inhibited in vitro. Summarizing, we have identified a novel B-Raf type-III inhibitor that exhibits potent cellular cytotoxicity.


Subject(s)
Enzyme Inhibitors/pharmacology , Guanidine/pharmacology , ras Proteins/metabolism , Allosteric Regulation/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Guanidine/chemical synthesis , Guanidine/chemistry , Humans , Molecular Structure , Structure-Activity Relationship
9.
Autophagy ; 10(10): 1749-60, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25126726

ABSTRACT

Birt-Hogg-Dubé (BHD) syndrome is a rare autosomal dominant condition caused by mutations in the FLCN gene and characterized by benign hair follicle tumors, pneumothorax, and renal cancer. Folliculin (FLCN), the protein product of the FLCN gene, is a poorly characterized tumor suppressor protein, currently linked to multiple cellular pathways. Autophagy maintains cellular homeostasis by removing damaged organelles and macromolecules. Although the autophagy kinase ULK1 drives autophagy, the underlying mechanisms are still being unraveled and few ULK1 substrates have been identified to date. Here, we identify that loss of FLCN moderately impairs basal autophagic flux, while re-expression of FLCN rescues autophagy. We reveal that the FLCN complex is regulated by ULK1 and elucidate 3 novel phosphorylation sites (Ser406, Ser537, and Ser542) within FLCN, which are induced by ULK1 overexpression. In addition, our findings demonstrate that FLCN interacts with a second integral component of the autophagy machinery, GABA(A) receptor-associated protein (GABARAP). The FLCN-GABARAP association is modulated by the presence of either folliculin-interacting protein (FNIP)-1 or FNIP2 and further regulated by ULK1. As observed by elevation of GABARAP, sequestome 1 (SQSTM1) and microtubule-associated protein 1 light chain 3 (MAP1LC3B) in chromophobe and clear cell tumors from a BHD patient, we found that autophagy is impaired in BHD-associated renal tumors. Consequently, this work reveals a novel facet of autophagy regulation by ULK1 and substantially contributes to our understanding of FLCN function by linking it directly to autophagy through GABARAP and ULK1.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagy , Intracellular Signaling Peptides and Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins , Autophagy-Related Protein-1 Homolog , Birt-Hogg-Dube Syndrome/metabolism , Birt-Hogg-Dube Syndrome/pathology , Carrier Proteins/metabolism , Humans , Mice , Molecular Sequence Data , Phosphorylation , Protein Binding , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/deficiency , Sequestosome-1 Protein , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/deficiency
10.
Autophagy ; 10(10): 1787-800, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25136802

ABSTRACT

Autophagy, a "self-eating" cellular process, has dual roles in promoting and suppressing tumor growth, depending on cellular context. PTP4A3/PRL-3, a plasma membrane and endosomal phosphatase, promotes multiple oncogenic processes including cell proliferation, invasion, and cancer metastasis. In this study, we demonstrate that PTP4A3 accumulates in autophagosomes upon inhibition of autophagic degradation. Expression of PTP4A3 enhances PIK3C3-BECN1-dependent autophagosome formation and accelerates LC3-I to LC3-II conversion in an ATG5-dependent manner. PTP4A3 overexpression also enhances the degradation of SQSTM1, a key autophagy substrate. These functions of PTP4A3 are dependent on its catalytic activity and prenylation-dependent membrane association. These results suggest that PTP4A3 functions to promote canonical autophagy flux. Unexpectedly, following autophagy activation, PTP4A3 serves as a novel autophagic substrate, thereby establishing a negative feedback-loop that may be required to fine-tune autophagy activity. Functionally, PTP4A3 utilizes the autophagy pathway to promote cell growth, concomitant with the activation of AKT. Clinically, from the largest ovarian cancer data set (GSE 9899, n = 285) available in GEO, high levels of expression of both PTP4A3 and autophagy genes significantly predict poor prognosis of ovarian cancer patients. These studies reveal a critical role of autophagy in PTP4A3-driven cancer progression, suggesting that autophagy could be a potential Achilles heel to block PTP4A3-mediated tumor progression in stratified patients with high expression of both PTP4A3 and autophagy genes.


Subject(s)
Autophagy , Neoplasm Proteins/metabolism , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/pathology , Protein Tyrosine Phosphatases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autophagy/drug effects , Autophagy/genetics , Biocatalysis/drug effects , CHO Cells , Cell Cycle Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Proliferation/drug effects , Chloroquine/pharmacology , Cricetinae , Cricetulus , Disease Progression , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Models, Biological , Ovarian Neoplasms/genetics , Phagosomes/drug effects , Phagosomes/metabolism , Prenylation/drug effects , Sequestosome-1 Protein , Substrate Specificity/drug effects , Survival Analysis
11.
Oncotarget ; 5(6): 1609-20, 2014 Mar 30.
Article in English | MEDLINE | ID: mdl-24742492

ABSTRACT

TBX2 is an oncogenic transcription factor known to drive breast cancer proliferation. We have identified the cysteine protease inhibitor Cystatin 6 (CST6) as a consistently repressed TBX2 target gene, co-repressed through a mechanism involving Early Growth Response 1 (EGR1). Exogenous expression of CST6 in TBX2-expressing breast cancer cells resulted in significant apoptosis whilst non-tumorigenic breast cells remained unaffected. CST6 is an important tumor suppressor in multiple tissues, acting as a dual protease inhibitor of both papain-like cathepsins and asparaginyl endopeptidases (AEPs) such as Legumain (LGMN). Mutation of the CST6 LGMN-inhibitory domain completely abrogated its ability to induce apoptosis in TBX2-expressing breast cancer cells, whilst mutation of the cathepsin-inhibitory domain or treatment with a pan-cathepsin inhibitor had no effect, suggesting that LGMN is the key oncogenic driver enzyme. LGMN activity assays confirmed the observed growth inhibitory effects were consistent with CST6 inhibition of LGMN. Knockdown of LGMN and the only other known AEP enzyme (GPI8) by siRNA confirmed that LGMN was the enzyme responsible for maintaining breast cancer proliferation. CST6 did not require secretion or glycosylation to elicit its cell killing effects, suggesting an intracellular mode of action. Finally, we show that TBX2 and CST6 displayed reciprocal expression in a cohort of primary breast cancers with increased TBX2 expression associating with increased metastases. We have also noted that tumors with altered TBX2/CST6 expression show poor overall survival. This novel TBX2-CST6-LGMN signaling pathway, therefore, represents an exciting opportunity for the development of novel therapies to target TBX2 driven breast cancers.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Cystatin M/genetics , Cysteine Endopeptidases/metabolism , T-Box Domain Proteins/metabolism , Apoptosis , Blotting, Western , Breast Neoplasms/genetics , Chromatin Immunoprecipitation , Cystatin M/metabolism , Cysteine Endopeptidases/genetics , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Glycosylation , Humans , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , T-Box Domain Proteins/antagonists & inhibitors , T-Box Domain Proteins/genetics , Tumor Cells, Cultured
12.
Adv Exp Med Biol ; 773: 323-51, 2014.
Article in English | MEDLINE | ID: mdl-24563355

ABSTRACT

Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-ß, which regulates the assembly of further complexes important in this process, such as Nup107-Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.


Subject(s)
Neoplasm Metastasis , Neoplasms/pathology , Nuclear Envelope/physiology , ran GTP-Binding Protein/metabolism , Active Transport, Cell Nucleus , Cell Cycle , Humans , Protein Conformation , Spindle Apparatus , ran GTP-Binding Protein/chemistry , ran GTP-Binding Protein/physiology
13.
Physiol Rep ; 1(5): e00076, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24303161

ABSTRACT

Nutrient provision after sprint exercise enhances mammalian target of rapamycin (mTOR) signaling. One suggested that nutrient sensor is the class III phosphatidylinositol 3-kinase, vacuolar protein sorting 34 (Vps34), not previously studied in human skeletal muscle. It is hypothesized that oral ingestion of essential amino acids (EAA) and carbohydrates (Carb) increases Vps34 activity and mTOR signaling in human skeletal (hVps34) muscle after sprint exercise. Nine subjects were performed 3 × 30-sec all-out sprints with or without ingestion of EAA + Carb or placebo drinks in a randomized order with a month interval. Muscle biopsies were performed at rest and 140 min after last sprint and analyzed for p-mTOR, p-p70S6k, p-eEF2 and for hVps34 activity and hVps34 protein content. Venous blood samples were collected and analyzed for amino acids, glucose, lactate, and insulin. During the sprint exercise session, EAA, glucose, and insulin in blood increased significantly more in EAA + Carb than in placebo. P-mTOR and p-p70S6k were significantly increased above rest in EAA + Carb (P = 0.03, P = 0.007) 140 min after last sprint, but not in placebo. Activity and protein expression of hVps34 were not significantly changed from rest in EAA + Carb 140 min after the last sprint. However, hVps34 activity and protein expression tended to increase in placebo (both P = 0.08). In conclusion, on the contrary to the hypothesis, no increase in activation of hVps34 was found following sprint exercise in EAA + Carb condition. In spite of this, the results support an activation of mTOR during this condition. However, this does not exclude the permissive role of hVps34 in mediating the amino acid-induced activation of mTOR and muscle protein synthesis.

14.
Biochem J ; 449(2): 389-400, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23078367

ABSTRACT

Hypoxia in the microenvironment of many solid tumours is an important determinant of malignant progression. The ISR (integrated stress response) protects cells from the ER (endoplasmic reticulum) stress caused by severe hypoxia. Likewise, autophagy is a mechanism by which cancer cells can evade hypoxic cell death. In the present paper we report that the autophagy-initiating kinase ULK1 (UNC51-like kinase 1) is a direct transcriptional target of ATF4 (activating transcription factor 4), which drives the expression of ULK1 mRNA and protein in severe hypoxia and ER stress. We demonstrate that ULK1 is required for autophagy in severe hypoxia and that ablation of ULK1 causes caspase-3/7-independent cell death. Furthermore, we report that ULK1 expression is associated with a poor prognosis in breast cancer. Collectively, the findings of the present study identify transcriptional up-regulation of ULK1 as a novel arm of the ISR, and suggest ULK1 as a potentially effective target for cancer therapy.


Subject(s)
Activating Transcription Factor 4/genetics , Intracellular Signaling Peptides and Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Transcriptional Activation , Up-Regulation , Activating Transcription Factor 4/metabolism , Animals , Autophagy/genetics , Autophagy-Related Protein-1 Homolog , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Hypoxia , Cell Line, Tumor , Cell Survival/genetics , Endoplasmic Reticulum Stress/genetics , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , MCF-7 Cells , Mice , Multivariate Analysis , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Prognosis , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Survival Analysis
15.
Biosci Rep ; 32(4): 413-22, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22668349

ABSTRACT

Inhibition of the PI3K (phosphoinositide 3-kinase)/Akt/mTORC1 (mammalian target of rapamycin complex 1) and Ras/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK pathways for cancer therapy has been pursued for over a decade with limited success. Emerging data have indicated that only discrete subsets of cancer patients have favourable responses to these inhibitors. This is due to genetic mutations that confer drug insensitivity and compensatory mechanisms. Therefore understanding of the feedback mechanisms that occur with respect to specific genetic mutations may aid identification of novel biomarkers that predict patient response. In the present paper, we show that feedback between the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways is cell-line-specific and highly dependent on the activating mutation of K-Ras or overexpression c-Met. We found that cell lines exhibited differential signalling and apoptotic responses to PD184352, a specific MEK inhibitor, and PI103, a second-generation class I PI3K inhibitor. We reveal that feedback from the PI3K/Akt/mTORC1 to the Ras/MEK/ERK pathway is present in cancer cells harbouring either K-Ras activating mutations or amplification of c-Met but not the wild-type counterparts. Moreover, we demonstrate that inhibition of protein phosphatase activity by OA (okadaic acid) restored PI103-mediated feedback in wild-type cells. Together, our results demonstrate a novel mechanism for feedback between the PI3K/Akt/mTORC1 and the Ras/MEK/ERK pathways that only occurs in K-Ras mutant and c-Met amplified cells but not the isogenic wild-type cells through a mechanism that may involve inhibition of a specific endogenous phosphatase(s) activity. We conclude that monitoring K-Ras and c-Met status are important biomarkers for determining the efficacy of PI103 and other PI3K/Akt inhibitors in cancer therapy.


Subject(s)
MAP Kinase Signaling System , Mutation , Oncogenes , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Benzamides/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Feedback, Physiological , Furans/pharmacology , Humans , Mechanistic Target of Rapamycin Complex 1 , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Multiprotein Complexes , Okadaic Acid/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Protein Processing, Post-Translational , Proteins/antagonists & inhibitors , Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins p21(ras) , Pyridines/pharmacology , Pyrimidines/pharmacology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases , Up-Regulation , ras Proteins/metabolism
16.
Clin Cancer Res ; 18(2): 380-91, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22090358

ABSTRACT

PURPOSE: Cancer cells have been shown to be more susceptible to Ran knockdown than normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK [mitogen-activated protein/extracellular signal-regulated kinase (ERK; MEK)] and phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 activities. EXPERIMENTAL DESIGN: Apoptosis was measured by flow cytometry [propidium iodide (PI) and Annexin V staining] and MTT assay in cancer cells grown under different conditions after knockdown of Ran. The correlations between Ran expression and patient survival were examined in breast and lung cancers. RESULTS: Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. K-Ras-mutated, c-Met-amplified, and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of K-Ras or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. CONCLUSION: Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways.


Subject(s)
Apoptosis/genetics , Breast Neoplasms/metabolism , Carcinoma/metabolism , Lung Neoplasms/metabolism , MAP Kinase Signaling System , ran GTP-Binding Protein/metabolism , Active Transport, Cell Nucleus , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Carcinoma/mortality , Carcinoma/pathology , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Female , Gene Deletion , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Mechanistic Target of Rapamycin Complex 1 , Mitogen-Activated Protein Kinases/metabolism , Multiprotein Complexes , Mutation , Myeloid Cell Leukemia Sequence 1 Protein , Neoplasm Invasiveness , Osteopontin/genetics , Osteopontin/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins p21(ras) , RNA Interference , Signal Transduction , TOR Serine-Threonine Kinases , Transcription, Genetic , ran GTP-Binding Protein/genetics , ras Proteins/genetics , ras Proteins/metabolism
17.
Biochem Biophys Res Commun ; 411(2): 227-34, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21708134

ABSTRACT

The tumour metastasis suppressor, N-myc Downstream Regulated Gene (NDRG) 1, is a by the protein kinases SGK1 and GSK3ß, but the relevance of its phosphorylation remains unclear. Analysis of HCT116 cells, either proficient or deficient for p53 revealed NDRG1 protein expression and phosphorylation by SGK1 was increased basally in p53-deficient cells. Treatment with the cell cycle inhibitors, aphidicolin or nocodazole also revealed increased NDRG1 phosphorylation in p53-deficient cells. Finally, phosphorylated NDRG1 was found to co-localise with γ-tubulin on centromeres and also to the cleavage furrow during cytokinesis. Taken together, this work demonstrates that NDRG1 phosphorylation, by the protein kinase SGK1, is temporally and spatially controlled during the cell cycle, suggesting a role for NDRG1 in successful mitosis.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle , Immediate-Early Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Centromere/metabolism , Down-Regulation , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mitosis , Phosphorylation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
18.
J Physiol ; 587(1): 253-60, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19015198

ABSTRACT

Following resistance exercise in the fasted state, both protein synthesis and degradation in skeletal muscle are increased. The addition of essential amino acids potentiates the synthetic response suggesting that an amino acid sensor, which is involved in both synthesis and degradation, may be activated by resistance exercise. One such candidate protein is the class 3 phosphatidylinositol 3OH-kinase (PI3K) Vps34. To determine whether mammalian Vps34 (mVps34) is modulated by high-resistance contractions, mVps34 and S6K1 (an index of mTORC1) activity were measured in the distal hindlimb muscles of rats 0.5, 3, 6 and 18 h after acute unilateral high-resistance contractions with the contralateral muscles serving as a control. In the lengthening tibialis anterior (TA) muscle, S6K1 (0.5 h = 366.3 +/- 112.08%, 3 h = 124.7 +/- 15.96% and 6 h = 129.2 +/- 0%) and mVps34 (3 h = 68.8 +/- 15.1% and 6 h = 36.0 +/- 8.79%) activity both increased, whereas in the shortening soleus and plantaris (PLN) muscles the increase was significantly lower (PLN S6K1 0.5 h = 33.1 +/- 2.29% and 3 h = 47.0 +/- 6.65%; mVps34 3 h = 24.5 +/- 7.92%). HPLC analysis of the TA demonstrated a 25% increase in intramuscular leucine concentration in rats 1.5 h after exercise. A similar level of leucine added to C2C12 cells in vitro increased mVps34 activity 3.2-fold. These data suggest that, following high-resistance contractions, mVps34 activity is stimulated by an influx of essential amino acids such as leucine and this may prolong mTORC1 signalling and contribute to muscle hypertrophy.


Subject(s)
Muscle Contraction/physiology , Phosphatidylinositol 3-Kinases/metabolism , Animals , Cell Line , Enzyme Activation , Female , Hypertrophy , Leucine/metabolism , Mice , Muscle, Skeletal/pathology , Muscle, Skeletal/physiology , Physical Exertion/physiology , Rats , Rats, Wistar , Resistance Training , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction , Stress, Mechanical , Transcription Factors/metabolism
19.
Opt Lett ; 31(24): 3612-4, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17130920

ABSTRACT

We propose an efficient coherent power scaling scheme, the multichip vertical-external-cavity surface-emitting laser (VECSEL), in which the waste heat generated in the active region is distributed on multi-VECSEL chips such that the pump level at the thermal rollover is significantly increased. The advantages of this laser are discussed, and the development and demonstration of a two-chip VECSEL operating around 970 nm with over 19 W of output power is presented.

20.
J Biol Chem ; 280(38): 33076-82, 2005 Sep 23.
Article in English | MEDLINE | ID: mdl-16049009

ABSTRACT

Mammalian cells respond to nutrient deprivation by inhibiting energy consuming processes, such as proliferation and protein synthesis, and by stimulating catabolic processes, such as autophagy. p70 S6 kinase (S6K1) plays a central role during nutritional regulation of translation. S6K1 is activated by growth factors such as insulin, and by mammalian target of rapamycin (mTOR), which is itself regulated by amino acids. The Class IA phosphatidylinositol (PI) 3-kinase plays a well recognized role in the regulation of S6K1. We now present evidence that the Class III PI 3-kinase, hVps34, also regulates S6K1, and is a critical component of the nutrient sensing apparatus. Overexpression of hVps34 or the associated hVps15 kinase activates S6K1, and insulin stimulation of S6K1 is blocked by microinjection of inhibitory anti-hVps34 antibodies, overexpression of a FYVE domain construct that sequesters the hVps34 product PI3P, or small interfering RNA-mediated knock-down of hVps34. hVps34 is not part of the insulin input to S6K1, as it is not stimulated by insulin, and inhibition of hVps34 has no effect on phosphorylation of Akt or TSC2 in insulin-stimulated cells. However, hVps34 is inhibited by amino acid or glucose starvation, suggesting that it lies on the nutrient-regulated pathway to S6K1. Consistent with this, hVps34 is also inhibited by activation of the AMP-activated kinase, which inhibits mTOR/S6K1 in glucose-starved cells. hVps34 appears to lie upstream of mTOR, as small interfering RNA knock-down of hVps34 inhibits the phosphorylation of another mTOR substrate, eIF4E-binding protein-1 (4EBP1). Our data suggest that hVps34 is a nutrient-regulated lipid kinase that integrates amino acid and glucose inputs to mTOR and S6K1.


Subject(s)
Phosphatidylinositol 3-Kinases/physiology , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , AMP-Activated Protein Kinases , Animals , CHO Cells , Cell Line , Cell Line, Tumor , Cell Proliferation , Cricetinae , Enzyme Activation , Glucose/metabolism , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Insulin/metabolism , Models, Biological , Multienzyme Complexes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Plasmids/metabolism , Protein Biosynthesis , Protein Conformation , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , RNA, Small Interfering/metabolism , Signal Transduction , TOR Serine-Threonine Kinases , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...