Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 310
Filter
1.
Brain Pathol ; : e13286, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988008

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by upper and lower motor neuron signs. There are, however, cases where upper motor neurons (UMNs) are predominantly affected, leading to clinical presentations of UMN-dominant ALS or primary lateral sclerosis. Furthermore, cases exhibiting an UMN-predominant pattern of motor neuron disease (MND) presenting with corticobasal syndrome (CBS) have been sparsely reported. This study aims to clarify the clinicopathological features of patients with UMN-predominant MND. We reviewed 24 patients with UMN-predominant MND with TDP-43 pathology in the presence or absence of frontotemporal lobar degeneration. Additionally, we reviewed the medical records of patients with pathologically-confirmed corticobasal degeneration (CBD) who received a final clinical diagnosis of CBS (n = 10) and patients with pathologically-confirmed progressive supranuclear palsy (PSP) who received a final clinical diagnosis of PSP syndrome (n = 10). Of 24 UMN-predominant MND patients, 20 had a clinical diagnosis of an atypical parkinsonian disorder, including CBS (n = 11) and PSP syndrome (n = 8). Only two patients had antemortem diagnoses of motor neuron disease. UMN-predominant MND patients with CBS less frequently exhibited apraxia than those with CBD, and they were less likely to meet clinical criteria for possible or probable CBS. Similarly, UMN-predominant MND patients with PSP syndrome less often met clinical criteria for probable PSP than PSP patients with PSP syndrome. Our findings suggest that UMN-predominant MND can mimic atypical parkinsonism, and should be considered in the differential diagnosis of CBS and PSP syndrome, in particular when criteria are not met.

2.
medRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38978643

ABSTRACT

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) is a fatal neurodegenerative disorder with only a limited number of risk loci identified. We report our comprehensive genome-wide association study as part of the International FTLD-TDP Whole-Genome Sequencing Consortium, including 985 cases and 3,153 controls, and meta-analysis with the Dementia-seq cohort, compiled from 26 institutions/brain banks in the United States, Europe and Australia. We confirm UNC13A as the strongest overall FTLD-TDP risk factor and identify TNIP1 as a novel FTLD-TDP risk factor. In subgroup analyses, we further identify for the first time genome-wide significant loci specific to each of the three main FTLD-TDP pathological subtypes (A, B and C), as well as enrichment of risk loci in distinct tissues, brain regions, and neuronal subtypes, suggesting distinct disease aetiologies in each of the subtypes. Rare variant analysis confirmed TBK1 and identified VIPR1 , RBPJL , and L3MBTL1 as novel subtype specific FTLD-TDP risk genes, further highlighting the role of innate and adaptive immunity and notch signalling pathway in FTLD-TDP, with potential diagnostic and novel therapeutic implications.

3.
Brain Commun ; 6(4): fcae183, 2024.
Article in English | MEDLINE | ID: mdl-39021510

ABSTRACT

Predominant limbic degeneration has been associated with various underlying aetiologies and an older age, predominant impairment of episodic memory and slow clinical progression. However, the neurological syndrome associated with predominant limbic degeneration is not defined. This endeavour is critical to distinguish such a syndrome from those originating from neocortical degeneration, which may differ in underlying aetiology, disease course and therapeutic needs. We propose a set of clinical criteria for a limbic-predominant amnestic neurodegenerative syndrome that is highly associated with limbic-predominant age-related TDP-43 encephalopathy but also other pathologic entities. The criteria incorporate core, standard and advanced features, including older age at evaluation, mild clinical syndrome, disproportionate hippocampal atrophy, impaired semantic memory, limbic hypometabolism, absence of neocortical degeneration and low likelihood of neocortical tau, with degrees of certainty (highest, high, moderate and low). We operationalized this set of criteria using clinical, imaging and biomarker data to validate its associations with clinical and pathologic outcomes. We screened autopsied patients from Mayo Clinic and Alzheimer's Disease Neuroimaging Initiative cohorts and applied the criteria to those with an antemortem predominant amnestic syndrome (Mayo, n = 165; Alzheimer's Disease Neuroimaging Initiative, n = 53) and who had Alzheimer's disease neuropathological change, limbic-predominant age-related TDP-43 encephalopathy or both pathologies at autopsy. These neuropathology-defined groups accounted for 35, 37 and 4% of cases in the Mayo cohort, respectively, and 30, 22 and 9% of cases in the Alzheimer's Disease Neuroimaging Initiative cohort, respectively. The criteria effectively categorized these cases, with Alzheimer's disease having the lowest likelihoods, limbic-predominant age-related TDP-43 encephalopathy patients having the highest likelihoods and patients with both pathologies having intermediate likelihoods. A logistic regression using the criteria features as predictors of TDP-43 achieved a balanced accuracy of 74.6% in the Mayo cohort, and out-of-sample predictions in an external cohort achieved a balanced accuracy of 73.3%. Patients with high likelihoods had a milder and slower clinical course and more severe temporo-limbic degeneration compared to those with low likelihoods. Stratifying patients with both Alzheimer's disease neuropathological change and limbic-predominant age-related TDP-43 encephalopathy from the Mayo cohort according to their likelihoods revealed that those with higher likelihoods had more temporo-limbic degeneration and a slower rate of decline and those with lower likelihoods had more lateral temporo-parietal degeneration and a faster rate of decline. The implementation of criteria for a limbic-predominant amnestic neurodegenerative syndrome has implications to disambiguate the different aetiologies of progressive amnestic presentations in older age and guide diagnosis, prognosis, treatment and clinical trials.

4.
J Neurooncol ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037687

ABSTRACT

PURPOSE: PreOperative radiotherapy (RT) is commonly used in the treatment of brain metastasis and different cancer types but has never been used in primary glioblastoma (GBM). Here, we aim to establish, describe, and validate the use of PreOperative RT for the treatment of GBM in a preclinical model. METHODS: Rat brains were locally irradiated with 30-Gy, hypofractionated in five doses 2 weeks before or after the resection of intracranial GBM. Kaplan-Meier analysis determined survival. Hematoxylin-eosin staining was performed, and nuclei size and p21 senescence marker were measured in both resected and recurrent rodent tumors. Immunohistochemistry assessed microglia/macrophage markers, and RNAseq analyzed gene expression changes in recurrent tumors. Akoya Multiplex Staining on two human patients from our ongoing Phase I/IIa trial served as proof of principle. RESULTS: PreOperative RT group median survival was significantly higher than PostOperative RT (p < 0.05). Radiation enlarged cytoplasm and nuclei in PreOperative RT resected tumors (p < 0.001) and induced senescence in PostOperative RT recurrent tumors (p < 0.05). Gene Set Enrichment Analysis (GSEA) suggested a more proliferative profile in PreOperative RT group. PreOperative RT showed lower macrophage/microglia recruitment in recurrent tumors (p < 0.01) compared to PostOperative RT. Akoya Multiplex results indicated TGF-ß accumulation in the cytoplasm of TAMs and CD4 + lymphocyte predominance in PostOperative group. CONCLUSIONS: This is the first preclinical study showing feasibility and longer overall survival using neoadjuvant radiotherapy before GBM resection in a mammalian model. This suggests strong superiority for new clinical radiation strategies. Further studies and trials are required to confirm our results.

5.
Sci Rep ; 14(1): 15960, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987294

ABSTRACT

Non-invasive imaging of GSK-3 expression in the brain will help to understand the role of GSK-3 in disease pathology and progression. Herein, we report the radiosynthesis and evaluation of two novel isonicotinamide based 18F labeled PET probes, [18F]2 and [18F]6 for noninvasive imaging of GSK3. Among the developed PET probes, the in vitro blood-brain permeability coefficient of 2 (38 ± 20 × 10-6 cm/s, n = 3) was found to be better than 6 (8.75 ± 3.90 × 10-6 cm/s, n = 5). The reference compounds 2 and 6 showed nanomolar affinity towards GSK-3α and GSK-3ß. PET probe [18F]2 showed higher stability (100%) in mouse and human serums compared to [18F]6 (67.01 ± 4.93%, n = 3) in mouse serum and 66.20 ± 6.38%, n = 3) in human serum at 120 min post incubation. The in vivo imaging and blocking studies were performed in wild-type mice only with [18F]2 due to its observed stability. [18F]2 showed a SUV of 0.92 ± 0.28 (n = 6) in mice brain as early as 5 min post-injection followed by gradual clearance over time.


Subject(s)
Brain , Fluorine Radioisotopes , Glycogen Synthase Kinase 3 , Positron-Emission Tomography , Positron-Emission Tomography/methods , Animals , Humans , Mice , Fluorine Radioisotopes/chemistry , Brain/diagnostic imaging , Brain/metabolism , Glycogen Synthase Kinase 3/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/diagnostic imaging , Tissue Distribution
6.
J Nucl Med ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054278

ABSTRACT

Alzheimer disease (AD) exhibits spatially heterogeneous 3- or 4-repeat tau deposition across participants. Our overall goal was to develop an automated method to quantify the heterogeneous burden of tau deposition into a single number that would be clinically useful. Methods: We used tau PET scans from 3 independent cohorts: the Mayo Clinic Study of Aging and Alzheimer's Disease Research Center (Mayo, n = 1,290), the Alzheimer's Disease Neuroimaging Initiative (ADNI, n = 831), and the Open Access Series of Imaging Studies (OASIS-3, n = 430). A machine learning binary classification model was trained on Mayo data and validated on ADNI and OASIS-3 with the goal of predicting visual tau positivity (as determined by 3 raters following Food and Drug Administration criteria for 18F-flortaucipir). The machine learning model used region-specific SUV ratios scaled to cerebellar crus uptake. We estimated feature contributions based on an artificial intelligence-explainable method (Shapley additive explanations) and formulated a global tau summary measure, Tau Heterogeneity Evaluation in Alzheimer's Disease (THETA) score, using SUV ratios and Shapley additive explanations for each participant. We compared the performance of THETA with that of commonly used meta-regions of interest (ROIs) using the Mini-Mental State Examination, the Clinical Dementia Rating-Sum of Boxes, clinical diagnosis, and histopathologic staging. Results: The model achieved a balanced accuracy of 95% on the Mayo test set and at least 87% on the validation sets. It classified tau-positive and -negative participants with an AUC of 1.00, 0.96, and 0.94 on the Mayo, ADNI, and OASIS-3 cohorts, respectively. Across all cohorts, THETA showed a better correlation with the Mini-Mental State Examination and the Clinical Dementia Rating-Sum of Boxes (ρ ≥ 0.45, P < 0.05) than did meta-ROIs (ρ < 0.44, P < 0.05) and discriminated between participants who were cognitively unimpaired and those who had mild cognitive impairment with an effect size of 10.09, compared with an effect size of 3.08 for meta-ROIs. Conclusion: Our proposed approach identifies positive tau PET scans and provides a quantitative summary measure, THETA, that effectively captures heterogeneous tau deposition observed in AD. The application of THETA for quantifying tau PET in AD exhibits great potential.

7.
bioRxiv ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38903110

ABSTRACT

Background: Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates. This UFMylation has recently been identified as major modifier of tau aggregation upon seeding in experimental models. However, potential alterations of the UFM1 pathway in human AD brain have not been investigated yet. Methods: Here we used frontal and temporal cortex samples from individuals with or without AD to measure the protein levels of the UFMylation pathway in human brain. We used multivariable regression analyses followed by Bonferroni correction for multiple testing to analyze associations of the UFMylation pathway with neuropathological characteristics, primary biochemical measurements of tau and additional biochemical markers from the same cases. We further studied associations of the UFMylation cascade with cellular stress pathways using Spearman correlations with bulk RNAseq expression data and functionally validated these interactions using gene-edited neurons that were generated by CRISPR-Cas9. Results: Compared to controls, human AD brain had increased protein levels of UFM1. Our data further indicates that this increase mainly reflects conjugated UFM1 indicating hyperUFMylation in AD. UFMylation was strongly correlated with pathological tau in both AD-affected brain regions. In addition, we found that the levels of conjugated UFM1 were negatively correlated with soluble levels of the deUFMylation enzyme UFSP2. Functional analysis of UFM1 and/or UFSP2 knockout neurons revealed that the DNA damage response as well as the unfolded protein response are perturbed by changes in neuronal UFM1 signaling. Conclusions: There are marked changes in the UFMylation pathway in human AD brain. These changes are significantly associated with pathological tau, supporting the idea that the UFMylation cascade might indeed act as a modifier of tau pathology in human brain. Our study further nominates UFSP2 as an attractive target to reduce the hyperUFMylation observed in AD brain but also underscores the critical need to identify risks and benefits of manipulating the UFMylation pathway as potential therapeutic avenue for AD.

8.
Nat Commun ; 15(1): 4758, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902234

ABSTRACT

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Astrocytes , Blood-Brain Barrier , Pericytes , Smad3 Protein , Vascular Endothelial Growth Factor A , Zebrafish , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Smad3 Protein/metabolism , Smad3 Protein/genetics , Astrocytes/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Animals , Pericytes/metabolism , Pericytes/pathology , Male , Induced Pluripotent Stem Cells/metabolism , Female , Aged , Transcriptome , Brain/metabolism , Brain/pathology , Brain/blood supply , Aged, 80 and over , Disease Models, Animal
9.
JAMA Neurol ; 81(6): 619-629, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38619853

ABSTRACT

Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement. Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy. Design, Setting, and Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020. Data were analyzed from December 2022 to December 2023. Structural magnetic resonance imaging (MRI) and tau positron emission tomography (PET) were evaluated in an independent neuroimaging group. The FLAME cohort includes 2809 autopsied individuals; included in this study were neuropathologically diagnosed AD cases (FLAME-AD). A digital pathology subgroup of FLAME-AD cases was derived for glial activation analyses. Main Outcomes and Measures: Clinicopathologic factors of heterogeneity that inform patient history and neuropathologic evaluation of AD; CLix score (lower, relative cortical predominance/hippocampal sparing vs higher, relative cortical sparing/limbic predominant cases); neuroimaging measures (ie, structural MRI and tau-PET). Results: Of the 2809 autopsied individuals in the FLAME cohort, 1361 neuropathologically diagnosed AD cases were evaluated. A digital pathology subgroup included 60 FLAME-AD cases. The independent neuroimaging group included 93 cases. Among the 1361 FLAME-AD cases, 633 were male (47%; median [range] age at death, 81 [54-96] years) and 728 were female (53%; median [range] age at death, 81 [53-102] years). A younger symptomatic onset (Spearman ρ = 0.39, P < .001) and faster decline on the Mini-Mental State Examination (Spearman ρ = 0.27; P < .001) correlated with a lower CLix score in FLAME-AD series. Cases with a nonamnestic syndrome had lower CLix scores (median [IQR], 13 [9-18]) vs not (median [IQR], 21 [15-27]; P < .001). Hippocampal MRI volume (Spearman ρ = -0.45; P < .001) and flortaucipir tau-PET uptake in posterior cingulate and precuneus cortex (Spearman ρ = -0.74; P < .001) inversely correlated with CLix score. Although AD cases with a CLix score less than 10 had higher cortical tangle count, we found lower percentage of CD68-activated microglia/macrophage burden (median [IQR], 0.46% [0.32%-0.75%]) compared with cases with a CLix score of 10 to 30 (median [IQR], 0.75% [0.51%-0.98%]) and on par with a CLix score of 30 or greater (median [IQR], 0.40% [0.32%-0.57%]; P = .02). Conclusions and Relevance: Findings show that AD heterogeneity exists along a continuum of corticolimbic tangle distribution. Reduced CD68 burden may signify an underappreciated association between tau accumulation and microglia/macrophages activation that should be considered in personalized therapy for immune dysregulation.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Neuroglia , Positron-Emission Tomography , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Male , Female , Aged , Aged, 80 and over , Neuroglia/pathology , Neuroglia/metabolism , Cross-Sectional Studies , Retrospective Studies , Neurofibrillary Tangles/pathology , tau Proteins/metabolism , Middle Aged , Neuroimaging , Cohort Studies , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism , Autopsy
10.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585836

ABSTRACT

Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the precise mechanisms underlying the complexity of different types of tau pathology remain incompletely understood. Here we describe an approach for proteomic profiling of aggregate-associated proteomes on slides with formalin-fixed, paraffin-embedded (FFPE) tissue that utilizes proximity labelling upon high preservation of aggregate morphology, which permits the profiling of pathological aggregates regardless of their size. To comprehensively investigate the common and unique protein interactors associated with the variety of tau lesions present across different human tauopathies, Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP), were selected to represent the major tauopathy diseases. Implementation of our widely applicable Probe-dependent Proximity Profiling (ProPPr) strategy, using the AT8 antibody, permitted identification and quantification of proteins associated with phospho-tau lesions in well-characterized human post-mortem tissue. The analysis revealed both common and disease-specific proteins associated with phospho-tau aggregates, highlighting potential targets for therapeutic intervention and biomarker development. Candidate validation through high-resolution co-immunofluorescence of distinct aggregates across disease and control cases, confirmed the association of retromer complex protein VPS35 with phospho-tau lesions across the studied tauopathies. Furthermore, we discovered disease-specific associations of proteins including ferritin light chain (FTL) and the neuropeptide precursor VGF within distinct pathological lesions. Notably, examination of FTL-positive microglia in CBD astrocytic plaques indicate a potential role for microglial involvement in the pathogenesis of these tau lesions. Our findings provide valuable insights into the proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes across different tauopathies enhances our understanding of disease heterogeneity and provides a resource for future functional investigation, as well as development of targeted therapies and diagnostic biomarkers.

11.
J Int Neuropsychol Soc ; : 1-9, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38525671

ABSTRACT

OBJECTIVE: To determine whether poorer performance on the Boston Naming Test (BNT) in individuals with transactive response DNA-binding protein 43 pathology (TDP-43+) is due to greater loss of word knowledge compared to retrieval-based deficits. METHODS: Retrospective clinical-pathologic study of 282 participants with Alzheimer's disease neuropathologic changes (ADNC) and known TDP-43 status. We evaluated item-level performance on the 60-item BNT for first and last available assessment. We fit cross-sectional negative binomial count models that assessed total number of incorrect items, number correct of responses with phonemic cue (reflecting retrieval difficulties), and number of "I don't know" (IDK) responses (suggestive of loss of word knowledge) at both assessments. Models included TDP-43 status and adjusted for sex, age, education, years from test to death, and ADNC severity. Models that evaluated the last assessment adjusted for number of prior BNT exposures. RESULTS: 43% were TDP-43+. The TDP-43+ group had worse performance on BNT total score at first (p = .01) and last assessments (p = .01). At first assessment, TDP-43+ individuals had an estimated 29% (CI: 7%-56%) higher mean number of incorrect items after adjusting for covariates, and a 51% (CI: 15%-98%) higher number of IDK responses compared to TDP-43-. At last assessment, compared to TDP-43-, the TDP-43+ group on average missed 31% (CI: 6%-62%; p = .01) more items and had 33% more IDK responses (CI: 1% fewer to 78% more; p = .06). CONCLUSIONS: An important component of poorer performance on the BNT in participants who are TDP-43+ is having loss of word knowledge versus retrieval difficulties.

12.
Acta Neuropathol ; 147(1): 54, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472443

ABSTRACT

Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (ß: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Parkinson Disease , Humans , Lewy Body Disease/pathology , Parkinson Disease/pathology , Alzheimer Disease/pathology , Substantia Nigra/pathology , Neurofibrillary Tangles/pathology
13.
Cell ; 187(8): 1971-1989.e16, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38521060

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Lobar Degeneration , Prefrontal Cortex , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Gene Expression Profiling , Neurons/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Single-Cell Gene Expression Analysis
14.
Article in English | MEDLINE | ID: mdl-38514176

ABSTRACT

BACKGROUND: Primary progressive aphasia (PPA) defines a group of neurodegenerative disorders characterised by language decline. Three PPA variants correlate with distinct underlying pathologies: semantic variant PPA (svPPA) with transactive response DNA-binding protein of 43 kD (TDP-43) proteinopathy, agrammatic variant PPA (agPPA) with tau deposition and logopenic variant PPA (lvPPA) with Alzheimer's disease (AD). Our objectives were to differentiate PPA variants using clinical and neuroimaging features, assess progression and evaluate structural MRI and a novel 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) image decomposition machine learning algorithm for neuropathology prediction. METHODS: We analysed 82 autopsied patients diagnosed with PPA from 1998 to 2022. Clinical histories, language characteristics, neuropsychological results and brain imaging were reviewed. A machine learning framework using a k-nearest neighbours classifier assessed FDG-PET scans from 45 patients compared with a large reference database. RESULTS: PPA variant distribution: 35 lvPPA (80% AD), 28 agPPA (89% tauopathy) and 18 svPPA (72% frontotemporal lobar degeneration-TAR DNA-binding protein (FTLD-TDP)). Apraxia of speech was associated with 4R-tauopathy in agPPA, while pure agrammatic PPA without apraxia was linked to 3R-tauopathy. Longitudinal data revealed language dysfunction remained the predominant deficit for patients with lvPPA, agPPA evolved to corticobasal or progressive supranuclear palsy syndrome (64%) and svPPA progressed to behavioural variant frontotemporal dementia (44%). agPPA-4R-tauopathy exhibited limited pre-supplementary motor area atrophy, lvPPA-AD displayed temporal atrophy extending to the superior temporal sulcus and svPPA-FTLD-TDP had severe temporal pole atrophy. The FDG-PET-based machine learning algorithm accurately predicted clinical diagnoses and underlying pathologies. CONCLUSIONS: Distinguishing 3R-taupathy and 4R-tauopathy in agPPA may rely on apraxia of speech presence. Additional linguistic and clinical features can aid neuropathology prediction. Our data-driven brain metabolism decomposition approach effectively predicts underlying neuropathology.

15.
Nat Rev Neurol ; 20(4): 232-244, 2024 04.
Article in English | MEDLINE | ID: mdl-38429551

ABSTRACT

Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-ß and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Positron-Emission Tomography , Biomarkers/cerebrospinal fluid
16.
Acta Neuropathol Commun ; 12(1): 25, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336940

ABSTRACT

Alzheimer's disease (AD), characterized by the deposition of amyloid-ß (Aß) in senile plaques and neurofibrillary tangles of phosphorylated tau (pTau), is increasingly recognized as a complex disease with multiple pathologies. AD sometimes pathologically overlaps with age-related tauopathies such as four repeat (4R)-tau predominant argyrophilic grain disease (AGD). While AGD is often detected with AD pathology, the contribution of APOE4 to AGD risk is not clear despite its robust effects on AD pathogenesis. Specifically, how APOE genotype influences Aß and tau pathology in co-occurring AGD and AD has not been fully understood. Using postmortem brain samples (N = 353) from a neuropathologically defined cohort comprising of cases with AD and/or AGD pathology built to best represent different APOE genotypes, we measured the amounts of major AD-related molecules, including Aß40, Aß42, apolipoprotein E (apoE), total tau (tTau), and pTau181, in the temporal cortex. The presence of tau lesions characteristic of AD (AD-tau) was correlated with cognitive decline based on Mini-Mental State Examination (MMSE) scores, while the presence of AGD tau lesions (AGD-tau) was not. Interestingly, while APOE4 increased the risk of AD-tau pathology, it did not increase the risk of AGD-tau pathology. Although APOE4 was significantly associated with higher levels of insoluble Aß40, Aß42, apoE, and pTau181, the APOE4 effect was no longer detected in the presence of AGD-tau. We also found that co-occurrence of AGD with AD was associated with lower insoluble Aß42 and pTau181 levels. Overall, our findings suggest that different patterns of Aß, tau, and apoE accumulation mediate the development of AD-tau and AGD-tau pathology, which is affected by APOE genotype.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Tauopathies , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid , Amyloid beta-Peptides , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , tau Proteins , Tauopathies/pathology
17.
medRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405911

ABSTRACT

Background: Both genetic variants and epigenetic features contribute to the risk of Alzheimer's disease (AD). We studied the AD association of CpG-related single nucleotide polymorphisms (CGS), which act as the hub of both the genetic and epigenetic effects, in Hispanics decedents and generalized the findings to Non-Hispanic Whites (NHW) decedents. Methods: First, we derived the dosage of the CpG site-creating allele of multiple CGSes in each 1 KB window across the genome and we conducted a sliding window association test with clinical diagnosis of AD in 7,155 Hispanics (3,194 cases and 3,961 controls) using generalized linear mixed models with the adjustment of age, sex, population structure, genomic relationship matrix, and genotyping batches. Next, using methylation and bulk RNA-sequencing data from the dorsolateral pre-frontal cortex in 150 Hispanics brains, we tested the cis- and trans-effects of AD associated CGS on brain DNA methylation to mRNA expression. For the genes with significant cis- and trans-effects, we checked their enriched pathways. Results: We identified six genetic loci in Hispanics with CGS dosage associated with AD at genome-wide significance levels: ADAM20 (Score=55.2, P= 4.06×10 -8 ), between VRTN (Score=-19.6, P= 1.47×10 -8 ) and SYNDIG1L (Score=-37.7, P= 2.25×10 -9 ), SPG7 (16q24.3) (Score=40.5, P= 2.23×10 -8 ), PVRL2 (Score=125.86, P= 1.64×10 -9 ), TOMM40 (Score=-18.58, P= 4.61×10 -8 ), and APOE (Score=75.12, P= 7.26×10 -26 ). CGSes in PVRL2 and APOE were also genome-wide significant in NHW. Except for ADAM20 , CGSes in all the other five loci were associated with Hispanic brain methylation levels (mQTLs) and CGSes in SPG7, PVRL2, and APOE were also mQTLs in NHW. Except for SYNDIG1L ( P =0.08), brain methylation levels in all the other five loci affected downstream RNA expression in the Hispanics ( P <0.05), and methylation at VRTN and TOMM40 were also associated with RNA expression in NHW. Gene expression in these six loci were also regulated by CpG sites in genes that were enriched in the neuron projection and synapse (FDR<0.05). Conclusions: We identified six CpG associated genetic loci associated with AD in Hispanics, harboring both genetic and epigenetic risks. However, their downstream effects on mRNA expression maybe ethnic specific and different from NHW.

18.
Lancet Neurol ; 23(2): 168-177, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38267189

ABSTRACT

BACKGROUND: Posterior cortical atrophy is a rare syndrome characterised by early, prominent, and progressive impairment in visuoperceptual and visuospatial processing. The disorder has been associated with underlying neuropathological features of Alzheimer's disease, but large-scale biomarker and neuropathological studies are scarce. We aimed to describe demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy in a large international cohort. METHODS: We searched PubMed between database inception and Aug 1, 2021, for all published research studies on posterior cortical atrophy and related terms. We identified research centres from these studies and requested deidentified, individual participant data (published and unpublished) that had been obtained at the first diagnostic visit from the corresponding authors of the studies or heads of the research centres. Inclusion criteria were a clinical diagnosis of posterior cortical atrophy as defined by the local centre and availability of Alzheimer's disease biomarkers (PET or CSF), or a diagnosis made at autopsy. Not all individuals with posterior cortical atrophy fulfilled consensus criteria, being diagnosed using centre-specific procedures or before development of consensus criteria. We obtained demographic, clinical, biofluid, neuroimaging, and neuropathological data. Mean values for continuous variables were combined using the inverse variance meta-analysis method; only research centres with more than one participant for a variable were included. Pooled proportions were calculated for binary variables using a restricted maximum likelihood model. Heterogeneity was quantified using I2. FINDINGS: We identified 55 research centres from 1353 papers, with 29 centres responding to our request. An additional seven centres were recruited by advertising via the Alzheimer's Association. We obtained data for 1092 individuals who were evaluated at 36 research centres in 16 countries, the other sites having not responded to our initial invitation to participate to the study. Mean age at symptom onset was 59·4 years (95% CI 58·9-59·8; I2=77%), 60% (56-64; I2=35%) were women, and 80% (72-89; I2=98%) presented with posterior cortical atrophy pure syndrome. Amyloid ß in CSF (536 participants from 28 centres) was positive in 81% (95% CI 75-87; I2=78%), whereas phosphorylated tau in CSF (503 participants from 29 centres) was positive in 65% (56-75; I2=87%). Amyloid-PET (299 participants from 24 centres) was positive in 94% (95% CI 90-97; I2=15%), whereas tau-PET (170 participants from 13 centres) was positive in 97% (93-100; I2=12%). At autopsy (145 participants from 13 centres), the most frequent neuropathological diagnosis was Alzheimer's disease (94%, 95% CI 90-97; I2=0%), with common co-pathologies of cerebral amyloid angiopathy (71%, 54-88; I2=89%), Lewy body disease (44%, 25-62; I2=77%), and cerebrovascular injury (42%, 24-60; I2=88%). INTERPRETATION: These data indicate that posterior cortical atrophy typically presents as a pure, young-onset dementia syndrome that is highly specific for underlying Alzheimer's disease pathology. Further work is needed to understand what drives cognitive vulnerability and progression rates by investigating the contribution of sex, genetics, premorbid cognitive strengths and weaknesses, and brain network integrity. FUNDING: None.


Subject(s)
Alzheimer Disease , Humans , Female , Middle Aged , Male , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Cohort Studies , Biomarkers , Demography , Atrophy
19.
Brain ; 147(3): 980-995, 2024 03 01.
Article in English | MEDLINE | ID: mdl-37804318

ABSTRACT

Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.


Subject(s)
Artificial Intelligence , Deep Learning , Neuroimaging , Tauopathies , Humans , Amyloidogenic Proteins , Biomarkers , Fluorodeoxyglucose F18 , Neuroimaging/methods , Tauopathies/diagnostic imaging
20.
medRxiv ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38045300

ABSTRACT

Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a neuropathologically-defined disease that affects 40% of persons in advanced age, but its associated neurological syndrome is not defined. LATE neuropathological changes (LATE-NC) are frequently comorbid with Alzheimer's disease neuropathologic changes (ADNC). When seen in isolation, LATE-NC have been associated with a predominantly amnestic profile and slow clinical progression. We propose a set of clinical criteria for a limbic-predominant amnestic neurodegenerative syndrome (LANS) that is highly associated with LATE-NC but also other pathologic entities. The LANS criteria incorporate core, standard and advanced features that are measurable in vivo, including older age at evaluation, mild clinical syndrome, disproportionate hippocampal atrophy, impaired semantic memory, limbic hypometabolism, absence of neocortical degenerative patterns and low likelihood of neocortical tau, with degrees of certainty (highest, high, moderate, low). We operationalized this set of criteria using clinical, imaging and biomarker data to validate its associations with clinical and pathologic outcomes. We screened autopsied patients from Mayo Clinic (n = 922) and ADNI (n = 93) cohorts and applied the LANS criteria to those with an antemortem predominant amnestic syndrome (Mayo, n = 165; ADNI, n = 53). ADNC, ADNC/LATE-NC and LATE-NC accounted for 35%, 37% and 4% of cases in the Mayo cohort, respectively, and 30%, 22%, and 9% of cases in the ADNI cohort, respectively. The LANS criteria effectively categorized these cases, with ADNC having the lowest LANS likelihoods, LATE-NC patients having the highest likelihoods, and ADNC/LATE-NC patients having intermediate likelihoods. A logistic regression model using the LANS features as predictors of LATE-NC achieved a balanced accuracy of 74.6% in the Mayo cohort, and out-of-sample predictions in the ADNI cohort achieved a balanced accuracy of 73.3%. Patients with high LANS likelihoods had a milder and slower clinical course and more severe temporo-limbic degeneration compared to those with low likelihoods. Stratifying ADNC/LATE-NC patients from the Mayo cohort according to their LANS likelihood revealed that those with higher likelihoods had more temporo-limbic degeneration and a slower rate of cognitive decline, and those with lower likelihoods had more lateral temporo-parietal degeneration and a faster rate of cognitive decline. The implementation of LANS criteria has implications to disambiguate the different driving etiologies of progressive amnestic presentations in older age and guide prognosis, treatment, and clinical trials. The development of in vivo biomarkers specific to TDP-43 pathology are needed to refine molecular associations between LANS and LATE-NC and precise antemortem diagnoses of LATE.

SELECTION OF CITATIONS
SEARCH DETAIL