Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Dis Model Mech ; 17(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38463005

ABSTRACT

Snyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder caused by a mutation in the SMS gene, which encodes spermine synthase, and aberrant polyamine metabolism. SRS is characterized by intellectual disability, thin habitus, seizure, low muscle tone/hypotonia and osteoporosis. Progress towards understanding and treating SRS requires a model that recapitulates human gene variants and disease presentations. Here, we evaluated molecular and neurological presentations in the G56S mouse model, which carries a missense mutation in the Sms gene. The lack of SMS protein in the G56S mice resulted in increased spermidine/spermine ratio, failure to thrive, short stature and reduced bone density. They showed impaired learning capacity, increased anxiety, reduced mobility and heightened fear responses, accompanied by reduced total and regional brain volumes. Furthermore, impaired mitochondrial oxidative phosphorylation was evident in G56S cerebral cortex, G56S fibroblasts and Sms-null hippocampal cells, indicating that SMS may serve as a future therapeutic target. Collectively, our study establishes the suitability of the G56S mice as a preclinical model for SRS and provides a set of molecular and functional outcome measures that can be used to evaluate therapeutic interventions for SRS.


Subject(s)
Behavior, Animal , Disease Models, Animal , Mental Retardation, X-Linked , Polyamines , Spermine Synthase , Animals , Mental Retardation, X-Linked/pathology , Mental Retardation, X-Linked/genetics , Spermine Synthase/metabolism , Spermine Synthase/genetics , Polyamines/metabolism , Mitochondria/metabolism , Male , Mice , Fibroblasts/metabolism , Fibroblasts/pathology , Oxidative Phosphorylation , Hippocampus/pathology , Hippocampus/metabolism , Anxiety/pathology , Bone Density , Brain/pathology , Brain/metabolism , Fear , Humans , Organ Size
2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473716

ABSTRACT

Despite the well-known relevance of polyamines to many forms of life, little is known about how polyamines regulate osteogenesis and skeletal homeostasis. Here, we report a series of in vitro studies conducted with human-bone-marrow-derived pluripotent stromal cells (MSCs). First, we show that during osteogenic differentiation, mRNA levels of most polyamine-associated enzymes are relatively constant, except for the catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), which is strongly increased at both mRNA and protein levels. As a result, the intracellular spermidine to spermine ratio is significantly reduced during the early stages of osteoblastogenesis. Supplementation of cells with exogenous spermidine or spermine decreases matrix mineralization in a dose-dependent manner. Employing N-cyclohexyl-1,3-propanediamine (CDAP) to chemically inhibit spermine synthase (SMS), the enzyme catalyzing conversion of spermidine into spermine, also suppresses mineralization. Intriguingly, this reduced mineralization is rescued with DFMO, an inhibitor of the upstream polyamine enzyme ornithine decarboxylase (ODC1). Similarly, high concentrations of CDAP cause cytoplasmic vacuolization and alter mitochondrial function, which are also reversible with the addition of DFMO. Altogether, these studies suggest that excess polyamines, especially spermidine, negatively affect hydroxyapatite synthesis of primary MSCs, whereas inhibition of polyamine synthesis with DFMO rescues most, but not all of these defects. These findings are relevant for patients with Snyder-Robinson syndrome (SRS), as the presenting skeletal defects-associated with SMS deficiency-could potentially be ameliorated by treatment with DFMO.


Subject(s)
Mesenchymal Stem Cells , Spermidine , Humans , Spermidine/metabolism , Spermine/metabolism , Spermine Synthase/genetics , Ornithine Decarboxylase/metabolism , Osteogenesis , Polyamines/metabolism , Mesenchymal Stem Cells/metabolism , RNA, Messenger
3.
bioRxiv ; 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36711956

ABSTRACT

Polyamines (putrescine, spermidine, and spermine) are essential molecules for normal cellular functions and are subject to strict metabolic regulation. Mutations in the gene encoding spermine synthase (SMS) lead to accumulation of spermidine in an X-linked recessive disorder known as Snyder-Robinson syndrome (SRS). Presently, no treatments exist for this rare disease that manifests with a spectrum of symptoms including intellectual disability, developmental delay, thin habitus, and low muscle tone. The development of therapeutic interventions for SRS will require a suitable disease-specific animal model that recapitulates many of the abnormalities observed in patients. Here, we characterize the molecular, behavioral, and neuroanatomical features of a mouse model with a missense mutation in Sms gene that results in a glycine-to-serine substitution at position 56 (G56S) of the SMS protein. Mice harboring this mutation exhibit a complete loss of SMS protein and elevated spermidine/spermine ratio in skeletal muscles and the brain. In addition, the G56S mice demonstrate increased anxiety, impaired learning, and decreased explorative behavior in fear conditioning, Morris water maze, and open field tests, respectively. Furthermore, these mice failed to gain weight over time and exhibit abnormalities in brain structure and bone density. Transcriptomic analysis of the cerebral cortex revealed downregulation of genes associated with mitochondrial oxidative phosphorylation and ribosomal protein synthesis. Our findings also revealed impaired mitochondrial bioenergetics in fibroblasts isolated from the G56S mice, indicating a correlation between these processes in the affected mice. Collectively, our findings establish the first in-depth characterization of an SRS preclinical mouse model that identifies cellular processes that could be targeted for future therapeutic development.

4.
Cancer Res Commun ; 2(7): 639-652, 2022 07.
Article in English | MEDLINE | ID: mdl-36052016

ABSTRACT

Metabolic features of the tumor microenvironment (TME) antagonize anti-tumor immunity. We hypothesized that T cell infiltrated tumors with a known antigen should exhibit superior clinical outcomes, though some fare worse given unfavorable metabolic features leveraging T cell-infiltrated (Thi), human papillomavirus-related (HPV+) head and neck squamous cell carcinomas (HNSC) to test this hypothesis. Expression of 2,520 metabolic genes were analyzed among Thi HPV+ HNSCs stratified by high-risk molecular subtype. RNAseq data from The Cancer Genome Atlas (TCGA; 10 cancer types), single cell RNAseq data, and an immunotherapy-treated melanoma cohort were used to test the association between metabolic gene expression and clinical outcomes and contribution of tumor versus stromal cells to metabolic gene expression. Polyamine (PA) metabolism genes were overexpressed in high-risk, Thi HPV+ HNSCs. Genes involved in PA biosynthesis and transport were associated with T cell infiltration, recurrent or persistent cancer, overall survival status, primary site, molecular subtype, and MYC genomic alterations. PA biogenesis gene sets were associated with tumor intrinsic features while myeloid cells in HPV+ HNSCs were enriched in PA catabolism, regulatory, transport, putrescine, and spermidine gene set expression. PA gene set expression also correlated with IFNγ or cytotoxic T cell ssGSEA scores across TCGA tumor types. PA transport ssGSEA scores were associated with poor survival whereas putrescine ssGSEA scores portended better survival for several tumor types. Thi melanomas enriched in PA synthesis or combined gene set expression exhibited worse anti-PD-1 responses. These data address hurdles to anti-tumor immunity warranting further investigation of divergent polyamine metabolism in the TME.


Subject(s)
Head and Neck Neoplasms , Papillomavirus Infections , Humans , Prognosis , Papillomavirus Infections/genetics , Putrescine , Immunotherapy , Tumor Microenvironment/genetics
5.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142537

ABSTRACT

Tuberous sclerosis complex (TSC) is caused by mutations in the hamartin (TSC1) or tuberin (TSC2) genes. Using a mouse model of TSC renal cystogenesis that we have previously described, the current studies delineate the metabolic changes in the kidney and their relation to alterations in renal gene expression. To accomplish this, we compared the metabolome and transcriptome of kidneys from 28-day-old wildtype (Wt) and principal cell-specific Tsc1 KO (Tsc1 KO) mice using targeted 1H nuclear magnetic resonance targeted metabolomic and RNA-seq analyses. The significant changes in the kidney metabolome of Tsc1 KO mice included reductions in the level of several amino acids and significant decreases in creatine, NADH, inosine, UDP-galactose, GTP and myo-inositol levels. These derangements may affect energy production and storage, signal transduction and synthetic pathways. The pertinent derangement in the transcriptome of Tsc1 KO mice was associated with increased collecting duct acid secretion, active cell division and the up-regulation of signaling pathways (e.g., MAPK and AKT/PI3K) that suppress the TSC2 GTPase-activating function. The combined renal metabolome and transcriptome alterations observed in these studies correlate with the unregulated growth and predominance of genotypically normal A-intercalated cells in the epithelium of renal cysts in Tsc1 KO mice.


Subject(s)
Tuberous Sclerosis , Tumor Suppressor Proteins , Humans , Creatine/metabolism , Galactose/metabolism , GTP Phosphohydrolases/genetics , Guanosine Triphosphate/metabolism , Inosine/metabolism , Inositol/metabolism , Kidney/metabolism , Metabolome , NAD/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transcriptome , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism , Tumor Suppressor Proteins/genetics , Uridine Diphosphate/metabolism
6.
Med Sci (Basel) ; 10(3)2022 08 30.
Article in English | MEDLINE | ID: mdl-36135832

ABSTRACT

The major intracellular polyamines spermine and spermidine are abundant and ubiquitous compounds that are essential for cellular growth and development. Spermine catabolism is mediated by spermine oxidase (SMOX), a highly inducible flavin-dependent amine oxidase that is upregulated during excitotoxic, ischemic, and inflammatory states. In addition to the loss of radical scavenging capabilities associated with spermine depletion, the catabolism of spermine by SMOX results in the production of toxic byproducts, including H2O2 and acrolein, a highly toxic aldehyde with the ability to form adducts with DNA and inactivate vital cellular proteins. Despite extensive evidence implicating SMOX as a key enzyme contributing to secondary injury associated with multiple pathologic states, the lack of potent and selective inhibitors has significantly impeded the investigation of SMOX as a therapeutic target. In this study, we used a virtual and physical screening approach to identify and characterize a series of hit compounds with inhibitory activity against SMOX. We now report the discovery of potent and highly selective SMOX inhibitors 6 (IC50 0.54 µM, Ki 1.60 µM) and 7 (IC50 0.23 µM, Ki 0.46 µM), which are the most potent SMOX inhibitors reported to date. We hypothesize that these selective SMOX inhibitors will be useful as chemical probes to further elucidate the impact of polyamine catabolism on mechanisms of cellular injury.


Subject(s)
Oxidoreductases Acting on CH-NH Group Donors , Spermine , Acrolein/metabolism , Flavins , Hydrogen Peroxide , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Polyamines/chemistry , Polyamines/metabolism , Spermidine/metabolism , Spermidine/pharmacology , Spermine/metabolism , Spermine/pharmacology , Polyamine Oxidase
7.
Med Sci (Basel) ; 10(3)2022 08 22.
Article in English | MEDLINE | ID: mdl-35997336

ABSTRACT

Polyamines are small polycationic alkylamines involved in many fundamental cellular processes, including cell proliferation, survival, and protection from oxidative stress. Polyamine homeostasis is tightly regulated through coordinated biosynthesis, catabolism, and transport. Due to their continual proliferation, cancer cells maintain elevated intracellular polyamine pools. Both polyamine metabolism and transport are commonly dysregulated in cancer, and as such, polyamine analogues are a promising strategy for exploiting the increased polyamine requirement of cancer cells. One potential polyamine analogue resistance mechanism is the downregulation of the poorly defined polyamine transport system. Recent advances in nanomedicine have produced nanostructures with polyamine analogue-based backbones (nanopolyamines). Similar nanostructures with non-polyamine backbones have been shown to be transported by endocytosis. As these polyamine-based nanoparticles could be a method for polyamine analogue delivery that bypasses polyamine transport, we designed the current studies to determine the efficacy of polyamine-based nanoparticles in cells lacking intact polyamine transport. Utilizing polyamine transport-deficient derivatives of lung adenocarcinoma lines, we demonstrated that cells unable to transport natural polyamines were also resistant to nanopolyamine-induced cytotoxicity. This resistance was a result of transport-deficient cells being incapable of importing and accumulating nanopolyamines. Pharmacological modulation of polyamine transport confirmed these results in polyamine transport competent cells. These studies provide additional insight into the polyamine transport pathway and suggest that receptor-mediated endocytosis is a likely mechanism of transport for higher-order polyamines, polyamine analogues and the nanopolyamines.


Subject(s)
Antineoplastic Agents , Nanostructures , Neoplasms , Antineoplastic Agents/pharmacology , Humans , Nanomedicine , Neoplasms/drug therapy , Neoplasms/metabolism , Polyamines/chemistry , Polyamines/metabolism , Polyamines/pharmacology
8.
Int J Mol Sci ; 23(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35743239

ABSTRACT

Naturally occurring polyamines are absolutely required for cellular growth and proliferation. Many neoplastic cells are reliant on elevated polyamine levels and maintain these levels through dysregulated polyamine metabolism. The modulation of polyamine metabolism is thus a promising avenue for cancer therapeutics and has been attempted with numerous molecules, including enzyme inhibitors and polyamine analogues. SBP-101 (diethyl dihydroxyhomospermine) is a spermine analogue that has shown efficacy in slowing pancreatic tumor progression both in vitro and in vivo; however, the mechanisms underlying these effects remain unclear. We determined the effects of the SBP-101 treatment on a variety of cancer cell types in vitro, including lung, pancreatic, and ovarian. We evaluated the activity of enzymes involved in polyamine metabolism and the effect on intracellular polyamine pools following the SBP-101 treatment. The SBP-101 treatment produced a modest but variable increase in polyamine catabolism; however, a robust downregulation of the activity of the biosynthetic enzyme, ornithine decarboxylase (ODC), was seen across all of the cell types studied and indicates that SBP-101 likely exerts its effect predominately through the downregulation of ODC, with a minor upregulation of catabolism. Our in vitro work indicated that SBP-101 was most toxic in the tested ovarian cell lines. Therefore, we evaluated the efficacy of SBP-101 as a monotherapy in the immunosuppressive VDID8+ murine ovarian model. Mice treated with SBP-101 demonstrated a delay in tumor progression, a decrease in the overall tumor burden, and a marked increase in median survival.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice , Neoplasms/drug therapy , Ornithine Decarboxylase/metabolism , Polyamines/metabolism , Spermine/metabolism
9.
Cancer Chemother Pharmacol ; 87(1): 135-144, 2021 01.
Article in English | MEDLINE | ID: mdl-33215270

ABSTRACT

PURPOSE: Polyamines are absolutely essential for maintaining tumor cell proliferation. PG-11047, a polyamine analogue, is a nonfunctional competitor of the natural polyamine spermine that has demonstrated anticancer activity in cells and animal models of multiple cancer types. Preclinical investigations into the effects of common chemotherapeutic agents have revealed overlap with components of the polyamine metabolic pathway also affected by PG-11047. This report describes a Phase Ib clinical trial investigating PG-11047 in combination with cytotoxic and anti-angiogenic chemotherapeutic agents in patients with advanced refractory metastatic solid tumors or lymphoma. METHODS: A total of 172 patients were assigned to treatment arms based on cancer type to receive the appropriate standard-of-care therapy (gemcitabine, docetaxel, bevacizumab, erlotinib, cisplatin, 5-fluorouracil (5-FU), or sunitinib as directed) along with once weekly intravenous infusions of PG-11047. PG-11047 dose escalation ranged from 50 to 590 mg. RESULTS: The maximum tolerated dose (MTD) of PG-11047 in combination with bevacizumab, erlotinib, cisplatin, and 5-FU was 590 mg. Dose-limiting toxicities (DLTs) in these groups were rare (5 of 148 patients). Overall partial responses (PR) were observed in 12% of patients treated with PG-11047 and bevacizumab, with stable disease documented in an additional 40%. Stable disease occurred in 71.4% of patients in the 5-FU arm, 54.1% in the cisplatin arm, and 33.3% in the erlotinib arm. Four of the patients receiving cisplatin + PG-11047 (20%) had unconfirmed PRs. MTDs for gemcitabine, docetaxel, and sunitinib could not be determined due to DLTs at low doses of PG-11047 and small sample size. CONCLUSIONS: Results of this Phase Ib trial indicate that PG-11047 can be safely administered to patients in combination with bevacizumab, erlotinib, cisplatin, and 5-FU on the once weekly dosing schedule described and may provide therapeutic benefit. The manageable toxicity profile and high MTD determination provide a safety profile for further clinical studies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Lymphoma/drug therapy , Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/administration & dosage , Cisplatin/administration & dosage , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Docetaxel/administration & dosage , Dose-Response Relationship, Drug , Erlotinib Hydrochloride/administration & dosage , Female , Fluorouracil/administration & dosage , Humans , Lymphoma/pathology , Male , Maximum Tolerated Dose , Middle Aged , Neoplasms/pathology , Spermine/administration & dosage , Spermine/analogs & derivatives , Sunitinib/administration & dosage , Gemcitabine
10.
J Neuroinflammation ; 17(1): 301, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33054763

ABSTRACT

BACKGROUND: Polyamine catabolism plays a key role in maintaining intracellular polyamine pools, yet its physiological significance is largely unexplored. Here, we report that the disruption of polyamine catabolism leads to severe cerebellar damage and ataxia, demonstrating the fundamental role of polyamine catabolism in the maintenance of cerebellar function and integrity. METHODS: Mice with simultaneous deletion of the two principal polyamine catabolic enzymes, spermine oxidase and spermidine/spermine N1-acetyltransferase (Smox/Sat1-dKO), were generated by the crossbreeding of Smox-KO (Smox-/-) and Sat1-KO (Sat1-/-) animals. Development and progression of tissue injury was monitored using imaging, behavioral, and molecular analyses. RESULTS: Smox/Sat1-dKO mice are normal at birth, but develop progressive cerebellar damage and ataxia. The cerebellar injury in Smox/Sat1-dKO mice is associated with Purkinje cell loss and gliosis, leading to neuroinflammation and white matter demyelination during the latter stages of the injury. The onset of tissue damage in Smox/Sat1-dKO mice is not solely dependent on changes in polyamine levels as cerebellar injury was highly selective. RNA-seq analysis and confirmatory studies revealed clear decreases in the expression of Purkinje cell-associated proteins and significant increases in the expression of transglutaminases and markers of neurodegenerative microgliosis and astrocytosis. Further, the α-Synuclein expression, aggregation, and polyamination levels were significantly increased in the cerebellum of Smox/Sat1-dKO mice. Finally, there were clear roles of transglutaminase-2 (TGM2) in the cerebellar pathologies manifest in Smox/Sat1-dKO mice, as pharmacological inhibition of transglutaminases reduced the severity of ataxia and cerebellar injury in Smox/Sat1-dKO mice. CONCLUSIONS: These results indicate that the disruption of polyamine catabolism, via coordinated alterations in tissue polyamine levels, elevated transglutaminase activity and increased expression, polyamination, and aggregation of α-Synuclein, leads to severe cerebellar damage and ataxia. These studies indicate that polyamine catabolism is necessary to Purkinje cell survival, and for sustaining the functional integrity of the cerebellum.


Subject(s)
Acetyltransferases/deficiency , Ataxia/enzymology , Oxidoreductases Acting on CH-NH Group Donors/deficiency , Purkinje Cells/enzymology , Acetyltransferases/genetics , Animals , Apoptosis/physiology , Ataxia/genetics , Ataxia/pathology , Cerebellum/enzymology , Cerebellum/pathology , Inflammation/enzymology , Inflammation/genetics , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidoreductases Acting on CH-NH Group Donors/genetics , Purkinje Cells/pathology , Polyamine Oxidase
11.
Hum Mol Genet ; 29(14): 2395-2407, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32588887

ABSTRACT

Tuberous sclerosis complex (TSC) is a rare autosomal dominant neurodevelopmental disorder characterized by variable expressivity. TSC results from inactivating variants within the TSC1 or TSC2 genes, leading to constitutive activation of mechanistic target of rapamycin complex 1 signaling. Using a mouse model of TSC (Tsc2-RG) in which the Tsc2 gene is deleted in radial glial precursors and their neuronal and glial descendants, we observed increased ornithine decarboxylase (ODC) enzymatic activity and concentration of its product, putrescine. To test if increased ODC activity and dysregulated polyamine metabolism contribute to the neurodevelopmental defects of Tsc2-RG mice, we used pharmacologic and genetic approaches to reduce ODC activity in Tsc2-RG mice, followed by histologic assessment of brain development. We observed that decreasing ODC activity and putrescine levels in Tsc2-RG mice worsened many of the neurodevelopmental phenotypes, including brain growth and neuronal migration defects, astrogliosis and oxidative stress. These data suggest a protective effect of increased ODC activity and elevated putrescine that modify the phenotype in this developmental Tsc2-RG model.


Subject(s)
Neurons/metabolism , Ornithine Decarboxylase/genetics , Tuberous Sclerosis/genetics , Animals , Animals, Newborn , Brain/metabolism , Brain/pathology , Disease Models, Animal , Humans , Mice , Mutation/genetics , Neuroglia/metabolism , Neuroglia/pathology , Neurons/pathology , Phenotype , Polyamines/metabolism , Tuberous Sclerosis/pathology , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/genetics
12.
Cancer Chemother Pharmacol ; 85(6): 1089-1096, 2020 06.
Article in English | MEDLINE | ID: mdl-32447421

ABSTRACT

PURPOSE: Polyamines are essential for the sustained proliferation and biomass required by tumor cells. Bis-alkylated polyamine analogs are nonfunctional competitors of natural polyamines. Of these, PG-11047, a second-generation unsaturated analog of the polyamine spermine, has demonstrated anticancer activity in cell lines and animal models of multiple cancer types. This report describes the first phase I clinical trial to investigate PG-11047 in patients with advanced refractory metastatic solid tumors. METHODS: Forty-six patients were treated with 60-min intravenous infusions of PG-11047 using a 28-day dosing cycle with treatments on days 1, 8, and 15. Doses ranged from 50 to 750 mg. The treatment period consisted of at least two cycles. RESULTS: The maximum tolerated dose of PG-11047 administered at this dosing schedule was 610 mg. Dose-limiting toxicities (DLT) were mainly gastrointestinal, including oral/anal mucositis and diarrhea; other DLTs included one case each of angioedema and a grade 3 alanine aminotransferase (ALT) increase. The most common adverse effects were fatigue and anorexia. Stable disease was documented in 30% of patients. CONCLUSION: Results of this phase I trial suggest that PG-11047 can be safely administered to patients on the once weekly dosing schedule described. The manageable toxicity profile and high MTD determination provide a safety profile for further clinical studies, including those in combination with current chemotherapeutic agents.


Subject(s)
Neoplasms/drug therapy , Spermine/analogs & derivatives , Adult , Aged , Aged, 80 and over , Dose-Response Relationship, Drug , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasms/pathology , Prognosis , Spermine/administration & dosage , Spermine/pharmacokinetics , Tissue Distribution
13.
J Biol Chem ; 295(19): 6263-6277, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32139506

ABSTRACT

Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC.


Subject(s)
Biogenic Polyamines/biosynthesis , Cytotoxins/pharmacology , Eflornithine/pharmacology , Neoplasm Proteins , Ornithine Decarboxylase Inhibitors/pharmacology , Ornithine Decarboxylase/metabolism , Triple Negative Breast Neoplasms , Cell Line, Tumor , Female , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Proteolysis/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
14.
J Biol Chem ; 295(10): 3247-3256, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31996374

ABSTRACT

Snyder-Robinson syndrome (SRS) is an X-linked intellectual disability syndrome caused by a loss-of-function mutation in the spermine synthase (SMS) gene. Primarily affecting males, the main manifestations of SRS include osteoporosis, hypotonic stature, seizures, cognitive impairment, and developmental delay. Because there is no cure for SRS, treatment plans focus on alleviating symptoms rather than targeting the underlying causes. Biochemically, the cells of individuals with SRS accumulate excess spermidine, whereas spermine levels are reduced. We recently demonstrated that SRS patient-derived lymphoblastoid cells are capable of transporting exogenous spermine and its analogs into the cell and, in response, decreasing excess spermidine pools to normal levels. However, dietary supplementation of spermine does not appear to benefit SRS patients or mouse models. Here, we investigated the potential use of a metabolically stable spermine mimetic, (R,R)-1,12-dimethylspermine (Me2SPM), to reduce the intracellular spermidine pools of SRS patient-derived cells. Me2SPM can functionally substitute for the native polyamines in supporting cell growth while stimulating polyamine homeostatic control mechanisms. We found that both lymphoblasts and fibroblasts from SRS patients can accumulate Me2SPM, resulting in significantly decreased spermidine levels with no adverse effects on growth. Me2SPM administration to mice revealed that Me2SPM significantly decreases spermidine levels in multiple tissues. Importantly, Me2SPM was detectable in brain tissue, the organ most affected in SRS, and was associated with changes in polyamine metabolic enzymes. These findings indicate that the (R,R)-diastereomer of 1,12-Me2SPM represents a promising lead compound in developing a treatment aimed at targeting the molecular mechanisms underlying SRS pathology.


Subject(s)
Mental Retardation, X-Linked/pathology , Spermidine/metabolism , Spermine/analogs & derivatives , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Brain/metabolism , Chromatography, High Pressure Liquid , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Male , Mental Retardation, X-Linked/metabolism , Mice , Mice, Inbred C57BL , Polyamines/analysis , Polyamines/metabolism , Spermine/administration & dosage , Spermine/metabolism , Spermine/pharmacology , Spermine Synthase/genetics , Tumor Cells, Cultured
15.
Medchemcomm ; 10(5): 778-790, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31191868

ABSTRACT

We have previously described the synthesis and evaluation of 3,5-diamino-1,2,4-triazole analogues as inhibitors of the flavin-dependent histone demethylase LSD1. These compounds are potent inhibitors of LSD1 without activity against monoamine oxidases A and B, and promote the elevation of H3K4me2 levels in tumor cells in vitro. We now report that the cytotoxicity of these analogues in pancreatic tumor cells correlates with the overexpression of LSD1 in each tumor type. In addition, we show that a subset of these 3,5-diamino-1,2,4-triazole analogues inhibit a related flavin-dependent oxidase, the polyamine catabolic enzyme spermine oxidase (SMOX) in vitro.

16.
Med Sci (Basel) ; 6(4)2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30544565

ABSTRACT

Loss-of-function mutations of the spermine synthase gene (SMS) result in Snyder-Robinson Syndrome (SRS), a recessive X-linked syndrome characterized by intellectual disability, osteoporosis, hypotonia, speech abnormalities, kyphoscoliosis, and seizures. As SMS catalyzes the biosynthesis of the polyamine spermine from its precursor spermidine, SMS deficiency causes a lack of spermine with an accumulation of spermidine. As polyamines, spermine, and spermidine play essential cellular roles that require tight homeostatic control to ensure normal cell growth, differentiation, and survival. Using patient-derived lymphoblast cell lines, we sought to comprehensively investigate the effects of SMS deficiency on polyamine homeostatic mechanisms including polyamine biosynthetic and catabolic enzymes, derivatives of the natural polyamines, and polyamine transport activity. In addition to decreased spermine and increased spermidine in SRS cells, ornithine decarboxylase activity and its product putrescine were significantly decreased. Treatment of SRS cells with exogenous spermine revealed that polyamine transport was active, as the cells accumulated spermine, decreased their spermidine level, and established a spermidine-to-spermine ratio within the range of wildtype cells. SRS cells also demonstrated elevated levels of tissue transglutaminase, a change associated with certain neurodegenerative diseases. These studies form a basis for further investigations into the leading biochemical changes and properties of SMS-mutant cells that potentially represent therapeutic targets for the treatment of Snyder-Robinson Syndrome.

17.
J Biol Chem ; 293(48): 18736-18745, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30333229

ABSTRACT

Polyamines (PAs) are indispensable polycations ubiquitous to all living cells. Among their many critical functions, PAs contribute to the oxidative balance of the cell. Beginning with studies by the Tabor laboratory in bacteria and yeast, the requirement for PAs as protectors against oxygen radical-mediated damage has been well established in many organisms, including mammals. However, PAs also serve as substrates for oxidation reactions that produce hydrogen peroxide (H2O2) both intra- and extracellularly. As intracellular concentrations of PAs can reach millimolar concentrations, the H2O2 amounts produced through their catabolism, coupled with a reduction in protective PAs, are sufficient to cause the oxidative damage associated with many pathologies, including cancer. Thus, the maintenance of intracellular polyamine homeostasis may ultimately contribute to the maintenance of oxidative homeostasis. Again, pioneering studies by Tabor and colleagues led the way in first identifying spermine oxidase in Saccharomyces cerevisiae. They also first purified the extracellular bovine serum amine oxidase and elucidated the products of its oxidation of primary amine groups of PAs when included in culture medium. These investigations formed the foundation for many polyamine-related studies and experimental procedures still performed today. This Minireview will summarize key innovative studies regarding PAs and oxidative damage, starting with those from the Tabor laboratory and including the most recent advances, with a focus on mammalian systems.


Subject(s)
Oxidative Stress , Polyamines/metabolism , Animals , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/toxicity , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Polyamine Oxidase
18.
Nat Rev Cancer ; 18(11): 681-695, 2018 11.
Article in English | MEDLINE | ID: mdl-30181570

ABSTRACT

Advances in our understanding of the metabolism and molecular functions of polyamines and their alterations in cancer have led to resurgence in the interest of targeting polyamine metabolism as an anticancer strategy. Increasing knowledge of the interplay between polyamine metabolism and other cancer-driving pathways, including the PTEN-PI3K-mTOR complex 1 (mTORC1), WNT signalling and RAS pathways, suggests potential combination therapies that will have considerable clinical promise. Additionally, an expanding number of promising clinical trials with agents targeting polyamines for both therapy and prevention are ongoing. New insights into molecular mechanisms linking dysregulated polyamine catabolism and carcinogenesis suggest additional strategies that can be used for cancer prevention in at-risk individuals. In addition, polyamine blocking therapy, a strategy that combines the inhibition of polyamine biosynthesis with the simultaneous blockade of polyamine transport, can be more effective than therapies based on polyamine depletion alone and may involve an antitumour immune response. These findings open up new avenues of research into exploiting aberrant polyamine metabolism for anticancer therapy.


Subject(s)
Neoplasms/metabolism , Neoplasms/therapy , Polyamines/metabolism , Biological Transport , Humans , Neoplasms/pathology , Signal Transduction
19.
PLoS One ; 13(8): e0202677, 2018.
Article in English | MEDLINE | ID: mdl-30138353

ABSTRACT

Curcumin, a natural polyphenol that contributes to the flavor and yellow pigment of the spice turmeric, is known for its antioxidant, anti-inflammatory, and anticarcinogenic properties. Capable of affecting the initiation, promotion, and progression of carcinogenesis through multiple mechanisms, curcumin has potential utility for both chemoprevention and chemotherapy. Previous studies demonstrated that curcumin can inhibit ornithine decarboxylase (ODC) activity in human leukemia and breast cancer cells, and pretreatment with dietary curcumin blocks carcinogen-induced ODC activity in rodent models of skin, colon, and renal cancer. The current study investigated the regulation of polyamine metabolism in human gastric and colon carcinoma cell lines in response to curcumin. Curcumin treatment significantly induced spermine oxidase (SMOX) mRNA and activity, which results in the generation of hydrogen peroxide, a source of ROS. Simultaneously, curcumin down regulated spermidine/spermine N1-acetyltransferase (SSAT) activity and the biosynthetic enzymes ODC and S-adenosylmethionine decarboxylase (SAMDC), thereby diminishing intracellular polyamine pools. Combination treatments using curcumin with the ODC inhibitor 2-difluoromethylornithine (DFMO), an agent currently in clinical chemoprevention trials, significantly enhanced inhibition of ODC activity and decreased growth of GI cancer cell lines beyond that observed with either agent alone. Similarly, combining curcumin with the polyamine analogue bis(ethyl)norspermine enhanced growth inhibition that was accompanied by enhanced accumulation of the analogue and decreased intracellular polyamine levels beyond those observed with either agent alone. Importantly, cotreatment with curcumin permitted the lowering of the effective dose of ODC inhibitor or polyamine analogue. These studies provide insight into the polyamine-related mechanisms involved in the cancer cell response to curcumin and its potential as a chemopreventive or chemotherapeutic agent in the GI tract.


Subject(s)
Antineoplastic Agents/pharmacology , Biosynthetic Pathways/drug effects , Curcumin/pharmacology , Gastrointestinal Neoplasms/metabolism , Polyamines/metabolism , Spermine/analogs & derivatives , Acetyltransferases/metabolism , Adenosylmethionine Decarboxylase/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Eflornithine/pharmacology , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Ornithine Decarboxylase/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Spermine/pharmacology , Polyamine Oxidase
20.
Gastroenterology ; 155(3): 668-673, 2018 09.
Article in English | MEDLINE | ID: mdl-29802852

ABSTRACT

BACKGROUND & AIMS: Familial adenomatous polyposis is an autosomal dominant disorder characterized by the development of hundreds of colorectal adenomas and eventually colorectal cancer. Oral administration of the spice curcumin has been followed by regression of polyps in patients with this disorder. We performed a double-blinded randomized trial to determine the safety and efficacy of curcumin in patients with familial adenomatous polyposis. METHODS: This study included 44 patients with familial adenomatous polyposis (18-85 years old) who had not undergone colectomy or had undergone colectomy with ileorectal anastomosis or ileal anal pouches, had at least 5 intestinal adenomatous polyps, and had enrolled in Puerto Rico or the United States from September 2011 through November 2016. Patients were randomly assigned (1:1) to groups given 100% pure curcumin (1,500 mg orally, twice per day) or identical-appearing placebo capsules for 12 months. The number and size of lower gastrointestinal tract polyps were evaluated every 4 months for 1 year. The primary outcome was the number of polyps in the curcumin and placebo groups at 12 months or at the time of withdrawal from the study according to the intention-to-treat principle. RESULTS: After 1 year of treatment, the average rate of compliance was 83% in the curcumin group and 91% in the placebo group. After 12 weeks, there was no significant difference in the mean number of polyps between the placebo group (18.6; 95% CI, 9.3-27.8) and the curcumin group (22.6; 95% CI, 12.1-33.1; P = .58). We found no significant difference in mean polyp size between the curcumin group (2.3 mm; 95% CI, 1.8-2.8) and the placebo group (2.1 mm; 95% CI, 1.5-2.7; P = .76). Adverse events were few, with no significant differences between groups. CONCLUSIONS: In a double-blinded randomized trial of patients with familial adenomatous polyposis, we found no difference in the mean number or size of lower intestinal tract adenomas between patients given curcumin 3,000 mg/day and those given placebo for 12 weeks. Clinicaltrials.gov ID NCT00641147.


Subject(s)
Adenoma/drug therapy , Adenomatous Polyposis Coli/drug therapy , Antineoplastic Agents/administration & dosage , Colorectal Neoplasms/drug therapy , Curcumin/administration & dosage , Adenoma/etiology , Adenomatous Polyposis Coli/complications , Adolescent , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/etiology , Double-Blind Method , Female , Humans , Male , Middle Aged , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...