Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 281: 130735, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34289640

ABSTRACT

In many parts of the world, clean water has become increasingly scarce. Irrigation of agricultural land with treated wastewater is commonly used in response to water shortages but there is concern about the environmental fate and transport of contaminants present in the irrigation wastewater. This study aimed to examine the presence of wastewater sourced contaminants in soil and field grown corn (Zea mays) crops spray irrigated with treated wastewater. Soil, corn grain, leaves, and roots were sampled and tested from a long-term wastewater irrigation site as well as a non-irrigated control site in close geographic proximity. Samples were analyzed using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC × GC-TOFMS) and both targeted and non-targeted analyses were conducted to determine chemical differences between the wastewater irrigated and control samples. Target compounds detected and quantified in the samples include herbicides, phthalates, and polycyclic aromatic hydrocarbons. Non-targeted analysis showed chemical differences between each the wastewater irrigated and control samples. Furthermore, new chloro-dimethyl-benzotriazole compounds, which are suspected to be transformation products created by the chlorine disinfection process of the wastewater treatment plant, were tentatively identified in the wastewater effluent. Twenty of these new benzotriazoles were detected and semi-quantified in the wastewater irrigated soil samples at a maximum concentration of 472 ng/g. Eight of the most abundant benzotriazoles were also detected in the corn roots at concentrations up to 56 ng/g.


Subject(s)
Soil Pollutants , Wastewater , Agricultural Irrigation , Crops, Agricultural , Soil , Soil Pollutants/analysis , Wastewater/analysis , Zea mays
2.
Talanta ; 221: 121481, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33076092

ABSTRACT

Liquid-liquid extraction (LLE) and stir bar sorptive extraction (SBSE) are extraction methods used for the analysis of contaminants in aqueous samples. In this study, both LLE and SBSE were compared for the extraction of priority pollutants and contaminants of emerging concern (CECs) in wastewater influent and effluent samples, for analysis with comprehensive two-dimensional gas chromatography with time of flight mass spectrometry (GC × GC-TOFMS). The methods were compared for their extraction efficiency of a broad range of compounds, matrix effects, accurate and reliable quantification of targets, and sensitivity. The target analytes studied were semi-volatile organic compounds (SVOC) including polycyclic aromatic hydrocarbons, phenols, phthalate esters, anilines, ethers, aromatic nitro compounds, and nitrosamines. LLE allowed for a higher number of target analytes to be extracted with over 70% recovery and quantified more targets in the influent samples. Matrix interference effects had a negative impact on the recovery of non-polar contaminants, such as polycyclic aromatic hydrocarbons (PAHs), in the influent water samples especially with SBSE. In SBSE, 24 target analytes demonstrated significant matrix interference leading to poor analyte recovery and 13 analytes were negatively affected in the same way in LLE. Generally, polar compounds also demonstrated poor extraction with SBSE in both effluent and influent water samples. However, SBSE effluent chromatograms contained about three times as many total analytes as compared with LLE, suggesting that SBSE is more sensitive for trace contaminants in effluent samples. Based on this research, LLE is recommended for studies seeking to quantify a broad range of target analytes in complex matrices, like wastewater influent. SBSE is an appropriate method for the non-target and survey analysis of trace contaminants in less complex water samples.

3.
Anal Methods ; 12(36): 4487-4495, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32869778

ABSTRACT

The presence of contaminants of emerging concern (CECs) in wastewater effluent and surface waters is an important field of research for analytical scientists. This study takes a suspect screening approach to wastewater and surface water analysis using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-TOFMS). Two extraction procedures, traditional liquid-liquid extraction (LLE) and stir bar sorptive extraction (SBSE), were utilized and evaluated for their application to wastewater and surface water samples. Both techniques were evaluated regarding their recovery rates, range of compound classes extracted, and on their application to discovery of CECs. For the 14 surrogate compounds analyzed, LLE was able to extract all of them in each matrix with a recovery range of 19% to 159% and a median value of 74%. For SBSE, the recovery rates ranged from 19% to 117% with the median value at 66%, but only 8 of the compounds were able to be extracted because of the polarity bias for this extraction method. A new method of SBSE calibration was also developed using direct liquid injection of the internal standards before desorption of the stir bars. Initial findings indicate increased sensitivity and a greater range of unknown analyte recovery for SBSE, especially in the more dilute effluent and surface water samples. With the methods used in this study, SBSE has a concentration factor of approximately 416, improving that of LLE, which is 267. Suspect screening analysis was utilized to tentatively identify 32 CECs in the samples, the majority of which were pharmaceuticals and personal care products. More CECs were found using SBSE than LLE, especially in the surface water samples where 13 CECs were tentatively identified in the SBSE samples compared to 6 in the LLE samples.

4.
Sci Total Environ ; 699: 134310, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31678887

ABSTRACT

Wastewater treatment plants (WWTPs) are one of the major sources of contaminants of emerging concern (CECs) in the environment. Benzotriazole corrosion inhibitors are a class of CECs that are resistant to biodegradation and have been reported in waters varying from WWTP effluent to groundwater and drinking water. This study examined wastewater influent and effluent grab samples over three years using Comprehensive Two-Dimensional Gas Chromatography (GC × GC) to discover six target benzotriazoles, four of which have never been properly characterized in water prior to this work. The six benzotriazoles were two methyl isomers (4-methyl-1H-benzotriazole and 5-methyl-1H-benzotriazole) as well as four chloromethyl isomers (previously unidentified). Using targeted analysis, the benzotriazoles were quantified and semi-quantified in the wastewater. In all seasons sampled but one, the concentration of three of the four chloromethyl-benzotriazoles increased from the influent to effluent waters. For the first time, it was observed that the 4 and 5-methyl-benzotriazoles interact with the sodium hypochlorite in the tertiary treatment step of the WWTP leading to the formation of the four chloromethyl-benzotriazoles. This was confirmed with lab scale synthesis of the reaction where the products were chromatographically analyzed and matched mass spectral and retention time data of the water samples. Assisted by the mass spectral fragmentation information, the four chloromethyl-benzotriazole isomers were tentatively identified as 4-chloromethyl-2H-benzotriazole, 5-chloromethyl-1H-benzotriazole, 4-chloromethyl-1H-benzotriazole, and 5-chloromethyl-2H-benzotriazole, in order of elution. No analytical standards are available for the chloromethyl-benzotriazole compounds and this is the first attempted identification of them in waters. The yearly mass loadings of total benzotriazoles were estimated to average between 148.86 and 394.64 kg/year at this particular facility. The WWTP studied reuses all effluent water for irrigation of crop and forested land so this high value of benzotriazoles entering the environment is concerning and the impacts need to be further studied.

SELECTION OF CITATIONS
SEARCH DETAIL