Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Dev Ind Pharm ; 42(1): 150-156, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26006332

ABSTRACT

OBJECTIVE: Peptide YY3-36 [PYY(3-36)] has shown efficacy in appetite suppression when dosed by injection modalities (intraperitoneal (IP)/subcutaneous). Transitioning to needle-free delivery, towards inhalation, often utilizes systemic pharmacokinetics as a key endpoint to compare different delivery methods and doses. Systemic pharmacokinetics were evaluated for PYY3-36 when delivered by IP, subcutaneous, and inhalation, the systemic pharmacokinetics were then used to select doses in an appetite suppression pharmacodynamic study. METHODS: Dry-powder formulations were manufactured by spray drying and delivered to mice via nose only inhalation. The systemic plasma, lung tissue, and bronchoalveolar lavage fluid pharmacokinetics of different inhalation doses of PYY(3-36) were compared to IP and subcutaneous efficacious doses. Based on these pharmacokinetic data, inhalation doses of 70:30 PYY(3-36):Dextran T10 were evaluated in a mouse model of appetite suppression and compared to IP and subcutaneous data. RESULTS: Inhalation pharmacokinetic studies showed that plasma exposure was similar for a 2 × higher inhalation dose when compared to subcutaneous and IP delivery. Inhalation doses of 0.22 and 0.65 mg/kg were for efficacy studies. The results showed a dose-dependent (not dose proportional) decrease in food consumption over 4 h, which is similar to IP and subcutaneous delivery routes. CONCLUSIONS: The pharmacokinetic and pharmacodynamics results substantiate the ability of pharmacokinetic data to inform pharmacodynamics dose selection for inhalation delivery of the peptide PYY(3-36). Additionally, engineered PYY(3-36):Dextran T10 particles delivered to the respiratory tract show promise as a non-invasive therapeutic for appetite suppression.


Subject(s)
Appetite Depressants/pharmacology , Appetite/drug effects , Drug Compounding/methods , Peptide Fragments/pharmacology , Peptide YY/pharmacology , Administration, Inhalation , Aerosols , Animals , Appetite Depressants/administration & dosage , Appetite Depressants/pharmacokinetics , Appetite Depressants/therapeutic use , Biological Availability , Desiccation , Dextrans/chemistry , Drug Carriers/chemistry , Drug Dosage Calculations , Dry Powder Inhalers , Injections, Intraperitoneal , Injections, Subcutaneous , Mice , Peptide Fragments/administration & dosage , Peptide Fragments/pharmacokinetics , Peptide Fragments/therapeutic use , Peptide YY/administration & dosage , Peptide YY/pharmacokinetics , Peptide YY/therapeutic use , Powders
2.
AAPS PharmSciTech ; 15(6): 1545-50, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25106135

ABSTRACT

Inhaled peptides and proteins have promise for respiratory and systemic disease treatment. Engineered spray-dried powder formulations have been shown to stabilize peptides and proteins and optimize aerosol properties for pulmonary delivery. The current study was undertaken to investigate the in vitro and in vivo inhalation performance of a model spray-dried powder of insulin and dextran 10 in comparison to Exubera™. Dextrans are a class of glucans that are generally recognized as safe with optimum glass transition temperatures well suited for spray drying. A 70% insulin particle loading was prepared by formulating with 30% (w/v) dextran 10. Physical characterization revealed a "raisin like" particle. Both formulations were generated to produce a similar bimodal particle size distribution of less than 3.5 µm MMAD. Four female Beagle dogs were exposed to each powder in a crossover design. Similar presented and inhaled doses were achieved with each powder. Euglycemia was achieved in each dog prior and subsequent to dosing and blood samples were drawn out to 245 min post-exposure. Pharmacokinetic analyses of post-dose insulin levels were similar for both powders. Respective dextran 10-insulin and Exubera exposures were similar producing near identical area under the curve (AUC), 7,728 ± 1,516 and 6,237 ± 2,621; concentration maximums (C max), 126 and 121 (µU/mL), and concentration-time maximums, 20 and 14 min, respectively. These results suggest that dextran-10 and other dextrans may provide a novel path for formulating peptides and proteins for pulmonary delivery.


Subject(s)
Dextrans/chemistry , Drug Carriers , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Insulin/administration & dosage , Administration, Inhalation , Aerosols , Animals , Area Under Curve , Blood Glucose/drug effects , Blood Glucose/metabolism , Chemistry, Pharmaceutical , Cross-Over Studies , Dogs , Female , Hypoglycemic Agents/blood , Hypoglycemic Agents/chemistry , Insulin/blood , Insulin/chemistry , Insulin/pharmacokinetics , Metabolic Clearance Rate , Particle Size , Powders , Technology, Pharmaceutical/methods
3.
Int J Pharm ; 434(1-2): 406-12, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22692076

ABSTRACT

Target validation or demonstration of efficacy requires adequate in vivo exposure of tool molecules to determine their activity in order to validate the model or show the potential usefulness of the pharmacophore. Early discovery work is often carried out with compounds which possess undesirable PK properties in small rodents where the discovery formulation scientist is often forced to dose 2-4 times per day. Gastric retentive formulations in small rodents (rats/mice) could enable increased duration of exposure for compounds with narrow absorption windows or increased residence time for compounds with targets located in the GI tract. The aim of this work is to establish an easily administered gastric retentive gel for rodents in situ using a mixture of sodium alginate and karaya gum. Feasibility studies were conducted in Sprague-Dawley rats using barium sulfate as a radio-opaque tracer. The results show that gastric retention of barium was achieved for rats dosed with the gel formulation relative to a barium suspension. The gastric residence time of the gel varied from 1h to >8h (n=3). The data suggest that sodium alginate/karaya gum gels may be a useful tool to achieve gastric retention in rodent studies.


Subject(s)
Alginates/chemistry , Barium Sulfate/pharmacokinetics , Karaya Gum/chemistry , Animals , Barium Sulfate/administration & dosage , Feasibility Studies , Gels , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Rats , Rats, Sprague-Dawley , Suspensions , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...