Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38358351

ABSTRACT

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Subject(s)
Data Curation , Cryoelectron Microscopy/methods
2.
ArXiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38076521

ABSTRACT

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and consensus recommendations resulting from the workshop. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.

3.
Acta Crystallogr D Struct Biol ; 79(Pt 12): 1056-1070, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37921806

ABSTRACT

Hydrogen (H) atoms are abundant in macromolecules and often play critical roles in enzyme catalysis, ligand-recognition processes and protein-protein interactions. However, their direct visualization by diffraction techniques is challenging. Macromolecular X-ray crystallography affords the localization of only the most ordered H atoms at (sub-)atomic resolution (around 1.2 Šor higher). However, many H atoms of biochemical significance remain undetectable by this method. In contrast, neutron diffraction methods enable the visualization of most H atoms, typically in the form of deuterium (2H) atoms, at much more common resolution values (better than 2.5 Å). Thus, neutron crystallography, although technically demanding, is often the method of choice when direct information on protonation states is sought. REFMAC5 from the Collaborative Computational Project No. 4 (CCP4) is a program for the refinement of macromolecular models against X-ray crystallographic and cryo-EM data. This contribution describes its extension to include the refinement of structural models obtained from neutron crystallographic data. Stereochemical restraints with accurate bond distances between H atoms and their parent atom nuclei are now part of the CCP4 Monomer Library, the source of prior chemical information used in the refinement. One new feature for neutron data analysis in REFMAC5 is refinement of the protium/deuterium (1H/2H) fraction. This parameter describes the relative 1H/2H contribution to neutron scattering for hydrogen isotopes. The newly developed REFMAC5 algorithms were tested by performing the (re-)refinement of several entries available in the PDB and of one novel structure (FutA) using either (i) neutron data only or (ii) neutron data supplemented by external restraints to a reference X-ray crystallographic structure. Re-refinement with REFMAC5 afforded models characterized by R-factor values that are consistent with, and in some cases better than, the originally deposited values. The use of external reference structure restraints during refinement has been observed to be a valuable strategy, especially for structures at medium-low resolution.


Subject(s)
Neutron Diffraction , Proteins , Proteins/chemistry , Deuterium , Models, Molecular , Crystallography, X-Ray , Neutron Diffraction/methods , Hydrogen/chemistry , Neutrons , Macromolecular Substances/chemistry
4.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 368-373, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37158197

ABSTRACT

Macromolecular refinement uses experimental data together with prior chemical knowledge (usually digested into geometrical restraints) to optimally fit an atomic structural model into experimental data, while ensuring that the model is chemically plausible. In the CCP4 suite this chemical knowledge is stored in a Monomer Library, which comprises a set of restraint dictionaries. To use restraints in refinement, the model is analysed and template restraints from the dictionary are used to infer (i) restraints between concrete atoms and (ii) the positions of riding hydrogen atoms. Recently, this mundane process has been overhauled. This was also an opportunity to enhance the Monomer Library with new features, resulting in a small improvement in REFMAC5 refinement. Importantly, the overhaul of this part of CCP4 has increased flexibility and eased experimentation, opening up new possibilities.


Subject(s)
Proteins , Software , Proteins/chemistry , Crystallography, X-Ray , Models, Molecular , Macromolecular Substances/chemistry , Protein Conformation
5.
J Struct Biol ; 214(1): 107826, 2022 03.
Article in English | MEDLINE | ID: mdl-34915128

ABSTRACT

An open-source Python library EMDA for cryo-EM map and model manipulation is presented with a specific focus on validation. The use of several functionalities in the library is presented through several examples. The utility of local correlation as a metric for identifying map-model differences and unmodeled regions in maps, and how it is used as a metric of map-model validation is demonstrated. The mapping of local correlation to individual atoms, and its use to draw insights on local signal variations are discussed. EMDA's likelihood-based map overlay is demonstrated by carrying out a superposition of two domains in two related structures. The overlay is carried out first to bring both maps into the same coordinate frame and then to estimate the relative movement of domains. Finally, the map magnification refinement in EMDA is presented with an example to highlight the importance of adjusting the map magnification in structural comparison studies.


Subject(s)
Data Analysis , Cryoelectron Microscopy , Likelihood Functions , Microscopy, Electron , Models, Molecular , Protein Conformation
6.
Acta Crystallogr D Struct Biol ; 77(Pt 10): 1282-1291, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34605431

ABSTRACT

In 2020, cryo-EM single-particle analysis achieved true atomic resolution thanks to technological developments in hardware and software. The number of high-resolution reconstructions continues to grow, increasing the importance of the accurate determination of atomic coordinates. Here, a new Python package and program called Servalcat is presented that is designed to facilitate atomic model refinement. Servalcat implements a refinement pipeline using the program REFMAC5 from the CCP4 package. After the refinement, Servalcat calculates a weighted Fo - Fc difference map, which is derived from Bayesian statistics. This map helps manual and automatic model building in real space, as is common practice in crystallography. The Fo - Fc map helps in the visualization of weak features including hydrogen densities. Although hydrogen densities are weak, they are stronger than in the electron-density maps produced by X-ray crystallography, and some H atoms are even visible at ∼1.8 Šresolution. Servalcat also facilitates atomic model refinement under symmetry constraints. If point-group symmetry has been applied to the map during reconstruction, the asymmetric unit model is refined with the appropriate symmetry constraints.


Subject(s)
Algorithms , Cryoelectron Microscopy/methods , Hydrogen/chemistry , Macromolecular Substances/chemistry , Single Molecule Imaging/methods , Software , Models, Molecular
7.
Elife ; 102021 09 14.
Article in English | MEDLINE | ID: mdl-34519269

ABSTRACT

The mTORC1 kinase complex regulates cell growth, proliferation, and survival. Because mis-regulation of DEPTOR, an endogenous mTORC1 inhibitor, is associated with some cancers, we reconstituted mTORC1 with DEPTOR to understand its function. We find that DEPTOR is a unique partial mTORC1 inhibitor that may have evolved to preserve feedback inhibition of PI3K. Counterintuitively, mTORC1 activated by RHEB or oncogenic mutation is much more potently inhibited by DEPTOR. Although DEPTOR partially inhibits mTORC1, mTORC1 prevents this inhibition by phosphorylating DEPTOR, a mutual antagonism that requires no exogenous factors. Structural analyses of the mTORC1/DEPTOR complex showed DEPTOR's PDZ domain interacting with the mTOR FAT region, and the unstructured linker preceding the PDZ binding to the mTOR FRB domain. The linker and PDZ form the minimal inhibitory unit, but the N-terminal tandem DEP domains also significantly contribute to inhibition.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , TOR Serine-Threonine Kinases/metabolism , Binding Sites , Cryoelectron Microscopy , Escherichia coli , Gene Expression Regulation , Humans , Image Processing, Computer-Assisted , Intracellular Signaling Peptides and Proteins/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Models, Molecular , PDZ Domains , Protein Binding , Protein Conformation , Recombinant Proteins , TOR Serine-Threonine Kinases/genetics
8.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 727-745, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34076588

ABSTRACT

Covalent linkages between constituent blocks of macromolecules and ligands have been subject to inconsistent treatment during the model-building, refinement and deposition process. This may stem from a number of sources, including difficulties with initially detecting the covalent linkage, identifying the correct chemistry, obtaining an appropriate restraint dictionary and ensuring its correct application. The analysis presented herein assesses the extent of problems involving covalent linkages in the Protein Data Bank (PDB). Not only will this facilitate the remediation of existing models, but also, more importantly, it will inform and thus improve the quality of future linkages. By considering linkages of known type in the CCP4 Monomer Library (CCP4-ML), failure to model a covalent linkage is identified to result in inaccurate (systematically longer) interatomic distances. Scanning the PDB for proximal atom pairs that do not have a corresponding type in the CCP4-ML reveals a large number of commonly occurring types of unannotated potential linkages; in general, these may or may not be covalently linked. Manual consideration of the most commonly occurring cases identifies a number of genuine classes of covalent linkages. The recent expansion of the CCP4-ML is discussed, which has involved the addition of over 16 000 and the replacement of over 11 000 component dictionaries using AceDRG. As part of this effort, the CCP4-ML has also been extended using AceDRG link dictionaries for the aforementioned linkage types identified in this analysis. This will facilitate the identification of such linkage types in future modelling efforts, whilst concurrently easing the process involved in their application. The need for a universal standard for maintaining link records corresponding to covalent linkages, and references to the associated dictionaries used during modelling and refinement, following deposition to the PDB is emphasized. The importance of correctly modelling covalent linkages is demonstrated using a case study, which involves the covalent linkage of an inhibitor to the main protease in various viral species, including SARS-CoV-2. This example demonstrates the importance of properly modelling covalent linkages using a comprehensive restraint dictionary, as opposed to just using a single interatomic distance restraint or failing to model the covalent linkage at all.


Subject(s)
Models, Structural , Crystallography, X-Ray , Databases, Protein , Ligands , SARS-CoV-2/chemistry , Viral Proteins/chemistry
9.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 712-726, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34076587

ABSTRACT

In this contribution, the current protocols for modelling covalent linkages within the CCP4 suite are considered. The mechanism used for modelling covalent linkages is reviewed: the use of dictionaries for describing changes to stereochemistry as a result of the covalent linkage and the application of link-annotation records to structural models to ensure the correct treatment of individual instances of covalent linkages. Previously, linkage descriptions were lacking in quality compared with those of contemporary component dictionaries. Consequently, AceDRG has been adapted for the generation of link dictionaries of the same quality as for individual components. The approach adopted by AceDRG for the generation of link dictionaries is outlined, which includes associated modifications to the linked components. A number of tools to facilitate the practical modelling of covalent linkages available within the CCP4 suite are described, including a new restraint-dictionary accumulator, the Make Covalent Link tool and AceDRG interface in Coot, the 3D graphical editor JLigand and the mechanisms for dealing with covalent linkages in the CCP4i2 and CCP4 Cloud environments. These integrated solutions streamline and ease the covalent-linkage modelling workflow, seamlessly transferring relevant information between programs. Current recommended practice is elucidated by means of instructive practical examples. By summarizing the different approaches to modelling linkages that are available within the CCP4 suite, limitations and potential pitfalls that may be encountered are highlighted in order to raise awareness, with the intention of improving the quality of future modelled covalent linkages in macromolecular complexes.


Subject(s)
Macromolecular Substances/chemistry , Models, Molecular , Proteins/chemistry , Software , Computer Graphics , Crystallography, X-Ray , User-Computer Interface
10.
Acta Crystallogr D Struct Biol ; 76(Pt 10): 926-937, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33021494

ABSTRACT

This paper describes the global and local analysis of atomic displacement parameters (ADPs) of macromolecules in X-ray crystallography. The distribution of ADPs is shown to follow the shifted inverse-gamma distribution or a mixture of these distributions. The mixture parameters are estimated using the expectation-maximization algorithm. In addition, a method for the resolution- and individual ADP-dependent local analysis of neighbouring atoms has been designed. This method facilitates the detection of mismodelled atoms, heavy-metal atoms and disordered and/or incorrectly modelled ligands. Both global and local analyses can be used to detect errors in atomic models, thus helping in the (re)building, refinement and validation of macromolecular structures. This method can also serve as an additional validation tool during PDB deposition.


Subject(s)
Crystallography, X-Ray/methods , Macromolecular Substances/chemistry , Models, Molecular , Ligands , Protein Conformation
11.
IUCrJ ; 7(Pt 2): 342-354, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32148861

ABSTRACT

This study describes a method to estimate the likelihood of success in determining a macromolecular structure by X-ray crystallography and experimental single-wavelength anomalous dispersion (SAD) or multiple-wavelength anomalous dispersion (MAD) phasing based on initial data-processing statistics and sample crystal properties. Such a predictive tool can rapidly assess the usefulness of data and guide the collection of an optimal data set. The increase in data rates from modern macromolecular crystallography beamlines, together with a demand from users for real-time feedback, has led to pressure on computational resources and a need for smarter data handling. Statistical and machine-learning methods have been applied to construct a classifier that displays 95% accuracy for training and testing data sets compiled from 440 solved structures. Applying this classifier to new data achieved 79% accuracy. These scores already provide clear guidance as to the effective use of computing resources and offer a starting point for a personalized data-collection assistant.

12.
J Biomol NMR ; 73(6-7): 279, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31069606

ABSTRACT

The article "Joint X-ray/NMR structure refinement of multidomain/multisubunit systems" written by "Azzurra Carlon, Enrico Ravera, Giacomo Parigi, Garib N. Murshudov and Claudio Luchinat" was originally published electronically on the publisher's internet portal (currently SpringerLink) on 11 October 2018 without open access.

13.
Acta Crystallogr D Struct Biol ; 75(Pt 5): 505-518, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31063153

ABSTRACT

This paper describes a global analysis of macromolecular B values. It is shown that the distribution of B values generally follows the shifted inverse-gamma distribution (SIGD). The parameters of the SIGD are estimated using the Fisher scoring technique with the expected Fisher information matrix. It is demonstrated that a contour plot based on the parameters of the SIGD can play a role in the validation of macromolecular structures. The dependence of the peak-height distribution on resolution and atomic B values is also analysed. It is demonstrated that the B-value distribution can have a dramatically different effect on peak heights at different resolutions. Consequently, a comparative analysis of the B values of neighbouring atoms must account for resolution. A combination of the SIGD, peak-height distribution and outlier detection was used to identify a number of entries from the PDB that require attention. It is also shown that the presence of a multimodal B-value distribution often indicates that some loops or parts of the molecule have either been mismodelled or have dramatically different mobility, depending on their environment within the crystal. These distributions can also indicate the level of sharpening/blurring used before atomic structure refinement. It is recommended that procedures such as sharpening/blurring should be avoided during refinement, although they can play important roles in map visualization and model building.


Subject(s)
Gamma Rays , Macromolecular Substances/chemistry , Protein Conformation , Software , Crystallography, X-Ray , Models, Molecular
15.
J Biomol NMR ; 73(6-7): 265-278, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30311122

ABSTRACT

Data integration in structural biology has become a paradigm for the characterization of biomolecular systems, and it is now accepted that combining different techniques can fill the gaps in each other's blind spots. In this frame, one of the combinations, which we have implemented in REFMAC-NMR, is residual dipolar couplings from NMR together with experimental data from X-ray diffraction. The first are exquisitely sensitive to the local details but does not give any information about overall shape, whereas the latter encodes more the information about the overall shape but at the same time tends to miss the local details even at the highest resolutions. Once crystals are obtained, it is often rather easy to obtain a complete X-ray dataset, however it is time-consuming to obtain an exhaustive NMR dataset. Here, we discuss the effect of including a-priori knowledge on the properties of the system to reduce the number of experimental data needed to obtain a more complete picture. We thus introduce a set of new features of REFMAC-NMR that allow for improved handling of RDC data for multidomain proteins and multisubunit biomolecular complexes, and encompasses the use of pseudo-contact shifts as an additional source of NMR-based information. The new feature may either help in improving the refinement, or assist in spotting differences between the crystal and the solution data. We show three different examples where NMR and X-ray data can be reconciled to a unique structural model without invoking mobility.


Subject(s)
Crystallography, X-Ray , Models, Molecular , Models, Theoretical , Nuclear Magnetic Resonance, Biomolecular , Algorithms
16.
Sci Rep ; 8(1): 14876, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30291262

ABSTRACT

Twinning is a crystal growth anomaly, which has posed a challenge in macromolecular crystallography (MX) since the earliest days. Many approaches have been used to treat twinned data in order to extract structural information. However, in most cases it is usually simpler to rescreen for new crystallization conditions that yield an untwinned crystal form or, if possible, collect data from non-twinned parts of the crystal. Here, we report 11 structures of engineered variants of the E. coli enzyme N-acetyl-neuraminic lyase which, despite twinning and incommensurate modulation, have been successfully indexed, solved and deposited. These structures span a resolution range of 1.45-2.30 Å, which is unusually high for datasets presenting such lattice disorders in MX and therefore these data provide an excellent test set for improving and challenging MX data processing programs.


Subject(s)
Crystallography, X-Ray/methods , Escherichia coli/enzymology , Oxo-Acid-Lyases/chemistry , Crystallization/methods , Databases, Protein , Escherichia coli/chemistry , Models, Molecular , Protein Conformation
17.
Acta Crystallogr D Struct Biol ; 74(Pt 6): 492-505, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29872001

ABSTRACT

Recent advances in instrumentation and software have resulted in cryo-EM rapidly becoming the method of choice for structural biologists, especially for those studying the three-dimensional structures of very large macromolecular complexes. In this contribution, the tools available for macromolecular structure refinement into cryo-EM reconstructions that are available via CCP-EM are reviewed, specifically focusing on REFMAC5 and related tools. Whilst originally designed with a view to refinement against X-ray diffraction data, some of these tools have been able to be repurposed for cryo-EM owing to the same principles being applicable to refinement against cryo-EM maps. Since both techniques are used to elucidate macromolecular structures, tools encapsulating prior knowledge about macromolecules can easily be transferred. However, there are some significant qualitative differences that must be acknowledged and accounted for; relevant differences between these techniques are highlighted. The importance of phases is considered and the potential utility of replacing inaccurate amplitudes with their expectations is justified. More pragmatically, an upper bound on the correlation between observed and calculated Fourier coefficients, expressed in terms of the Fourier shell correlation between half-maps, is demonstrated. The importance of selecting appropriate levels of map blurring/sharpening is emphasized, which may be facilitated by considering the behaviour of the average map amplitude at different resolutions, as well as the utility of simultaneously viewing multiple blurred/sharpened maps. Features that are important for the purposes of computational efficiency are discussed, notably the Divide and Conquer pipeline for the parallel refinement of large macromolecular complexes. Techniques that have recently been developed or improved in Coot to facilitate and expedite the building, fitting and refinement of atomic models into cryo-EM maps are summarized. Finally, a tool for symmetry identification from a given map or coordinate set, ProSHADE, which can identify the point group of a map and thus may be used during deposition as well as during molecular visualization, is introduced.


Subject(s)
Cryoelectron Microscopy/methods , Models, Molecular , Macromolecular Substances/chemistry , Protein Conformation , Software
18.
Acta Crystallogr D Struct Biol ; 74(Pt 3): 215-227, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29533229

ABSTRACT

Refinement is a process that involves bringing into agreement the structural model, available prior knowledge and experimental data. To achieve this, the refinement procedure optimizes a posterior conditional probability distribution of model parameters, including atomic coordinates, atomic displacement parameters (B factors), scale factors, parameters of the solvent model and twin fractions in the case of twinned crystals, given observed data such as observed amplitudes or intensities of structure factors. A library of chemical restraints is typically used to ensure consistency between the model and the prior knowledge of stereochemistry. If the observation-to-parameter ratio is small, for example when diffraction data only extend to low resolution, the Bayesian framework implemented in REFMAC5 uses external restraints to inject additional information extracted from structures of homologous proteins, prior knowledge about secondary-structure formation and even data obtained using different experimental methods, for example NMR. The refinement procedure also generates the `best' weighted electron-density maps, which are useful for further model (re)building. Here, the refinement of macromolecular structures using REFMAC5 and related tools distributed as part of the CCP4 suite is discussed.


Subject(s)
Bayes Theorem , Macromolecular Substances/chemistry , Protein Conformation , Proteins/analysis , Proteins/chemistry , Software , Computer Simulation , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular
19.
IUCrJ ; 4(Pt 5): 626-638, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28989718

ABSTRACT

An algorithm for modelling the background for each Bragg reflection in a series of X-ray diffraction images containing Debye-Scherrer diffraction from ice in the sample is presented. The method involves the use of a global background model which is generated from the complete X-ray diffraction data set. Fitting of this model to the background pixels is then performed for each reflection independently. The algorithm uses a static background model that does not vary over the course of the scan. The greatest improvement can be expected for data where ice rings are present throughout the data set and the local background shape at the size of a spot on the detector does not exhibit large time-dependent variation. However, the algorithm has been applied to data sets whose background showed large pixel variations (variance/mean > 2) and has been shown to improve the results of processing for these data sets. It is shown that the use of a simple flat-background model as in traditional integration programs causes systematic bias in the background determination at ice-ring resolutions, resulting in an overestimation of reflection intensities at the peaks of the ice rings and an underestimation of reflection intensities either side of the ice ring. The new global background-model algorithm presented here corrects for this bias, resulting in a noticeable improvement in R factors following refinement.

20.
Acta Crystallogr D Struct Biol ; 73(Pt 9): 729-737, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28876236

ABSTRACT

In this paper, AUSPEX, a new software tool for experimental X-ray data analysis, is presented. Exploring the behaviour of diffraction intensities and the associated estimated uncertainties facilitates the discovery of underlying problems and can help users to improve their data acquisition and processing in order to obtain better structural models. The program enables users to inspect the distribution of observed intensities (or amplitudes) against resolution as well as the associated estimated uncertainties (sigmas). It is demonstrated how AUSPEX can be used to visually and automatically detect ice-ring artefacts in integrated X-ray diffraction data. Such artefacts can hamper structure determination, but may be difficult to identify from the raw diffraction images produced by modern pixel detectors. The analysis suggests that a significant portion of the data sets deposited in the PDB contain ice-ring artefacts. Furthermore, it is demonstrated how other problems in experimental X-ray data caused, for example, by scaling and data-conversion procedures can be detected by AUSPEX.


Subject(s)
Proteins/chemistry , Software , X-Ray Diffraction/methods , Algorithms , Artifacts , Databases, Protein , Ice/analysis , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...