Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Exp Eye Res ; 231: 109467, 2023 06.
Article in English | MEDLINE | ID: mdl-37031874

ABSTRACT

The polymer coated polymeric (PCP) microneedles (MNs) is a novel approach for controlled delivery of drugs (without allowing release of the excipients) to the target site. PCP MNs was explored as an approach to deliver the drug intravitreally to minimize the risks associated with conventional intravitreal injections. The core MNs was fabricated with polyvinyl pyrrolidone K30 (PVP K30) and coating was with Eudragit E100. Preformulation studies revealed that the films prepared using Eudragit E 100 exhibited excellent integrity in the physiological medium after prolonged exposure. FTIR studies were performed to investigate the possible interaction between the API and the polymer. The PCP MNs fabricated with different drug loads (dexamethasone sodium phosphate) were subjected to in vitro drug release studies. The drug release from uncoated MNs was instantaneous and complete. On the other hand, a controlled release profile was observed in case of PCP MNs. Likewise, even in the ex vivo porcine eye model, the drug release was gradual into the vitreous humor in case of PCP MNs. The uncoated microneedles released all the drug instantaneously where the PCP MNs retarded the release up to 3 h.


Subject(s)
Drug Delivery Systems , Polymers , Swine , Animals , Pharmaceutical Preparations , Povidone , Dexamethasone , Needles
2.
Mol Pharm ; 20(6): 2814-2821, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36625731

ABSTRACT

The objective of the project was to investigate the plausibility of active pharmaceutical ingredients (APIs) to undergo sublimation from topical application following evaporation of solvent. Topical formulations with different APIs were subjected to a sublimation screening test. The APIs in the selected topical products were found to undergo sublimation to a different extent. The salicylic acid topical product was found to undergo a significant loss due to sublimation. The extent of sublimation of salicylic acid was significantly greater at skin temperature compared to room temperature. When the APIs were subjected to the sublimation screening test in their neat form at 32 ± 1 °C, the natural log of the rate of sublimation decreased linearly with the standard enthalpy of sublimation of compound (R2 = 0.89). The formulation composition was found to have a significant impact on the extent of sublimation of the representative API, salicylic acid. The sublimation of APIs from the topical product was found to affect the mass balance studies in the case of the salicylic acid ointment. Furthermore, the results of the human studies agreed with the in vitro experimental results demonstrating the plausibility of loss of API due to sublimation from the site of application.


Subject(s)
Administration, Topical , Salicylic Acid , Sublimation, Chemical , Humans
4.
AAPS PharmSciTech ; 23(6): 223, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35962264

ABSTRACT

Delta-9-tetrahydrocannabinol (THC) is one of the most effective antinociceptive agents used in the treatment of peripheral neuropathy. THC is highly lipophilic and susceptible to thermal and oxidative degradation. Identifying appropriate solvents in which THC is stable as well as adequately solubilized is crucial in developing topical dosage forms. Lipid solvent systems are of utmost utility and relevance for formulating highly lipophilic drugs. Hence, the objective of this project was to screen the solubility of THC in lipidic excipients, monitor THC content in the selected vehicles during stability, and study the influence of these excipients on permeation of THC across skin. The solubility of THC in liquid lipid excipients was in the range of 421 to 500 mg/g. The solubility of THC in solid lipid excipients was in the range of 250 to 750 mg/g. THC in its neat form was poorly stable, but when dissolved in lipid-based excipients, its stability improved significantly. THC in lipid excipients was more stable at 4 ± 3°C compared to samples stored at 25 ± 2°C. The antioxidants (butylated hydroxytoluene and ascorbyl palmitate) used in the excipients further improved the stability of THC. The results demonstrated that the liquid and solid lipid excipients used in the study could solubilize THC freely and mitigate the degradation of THC significantly. The binary combination of lipid excipients enhanced THC skin permeation and retention, demonstrating the potential for topical formulation development of THC.


Subject(s)
Dronabinol , Excipients , Lipids , Skin , Solubility
5.
J Pharm Anal ; 12(2): 287-292, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35582396

ABSTRACT

Docosanol is the only US Food and Drug Administration (FDA) approved over-the-counter topical product for treating recurrent oral-facial herpes simplex labialis. Validated analytical methods for docosanol are required to demonstrate the bioequivalence of docosanol topical products. A gas chromatography/selected ion monitoring mode mass spectrometry (GC/SIM-MS) method was developed and validated for docosanol determination in biological samples. Docosanol and isopropyl palmitate (internal standard) were separated on a high-polarity GC capillary column with (88% cyanopropy)aryl-polysiloxane employed as the stationary phase. The ions of m/z 83 and 256 were selected to monitor docosanol and isopropyl palmitate, respectively; the total run time was 20 min. The GC/SIM-MS method was validated in accordance with US FDA guidelines, and the results met the US FDA acceptance criteria. The docosanol calibration standards were linear in the 100-10000 ng/mL concentration range (R 2>0.994). The recoveries for docosanol from the receptor fluid and skin homogenates were >93.2% and >95.8%, respectively. The validated method was successfully applied to analyze ex vivo human cadaver skin permeation samples. On applying Abreva® cream tube and Abreva® cream pump, the amount of docosanol that penetrated human cadaver skin at 48 h was 21.5 ± 7.01 and 24.0 ± 6.95 ng/mg, respectively. Accordingly, we concluded that the validated GC/SIM-MS was sensitive, specific, and suitable for quantifying docosanol as a quality control tool. This method can be used for routine analysis as a cost-effective alternative to other techniques.

6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-931256

ABSTRACT

Docosanol is the only US Food and Drug Administration(FDA)approved over-the-counter topical product for treating recurrent oral-facial herpes simplex labialis.Validated analytical methods for docosanol are required to demonstrate the bioequivalence of docosanol topical products.A gas chromatography/selected ion monitoring mode mass spectrometry(GC/SIM-MS)method was developed and validated for docosanol determination in biological samples.Docosanol and isopropyl palmitate(internal standard)were separated on a high-polarity GC capillary column with(88%cyanopropy)aryl-polysiloxane employed as the stationary phase.The ions of m/z 83 and 256 were selected to monitor docosanol and isopropyl palmitate,respectively;the total run time was 20 min.The GC/SIM-MS method was validated in accordance with US FDA guidelines,and the results met the US FDA acceptance criteria.The docosanol calibration standards were linear in the 100-10000 ng/mL concentration range(R2>0.994).The recoveries for docosanol from the receptor fluid and skin homogenates were>93.2%and>95.8%,respectively.The validated method was successfully applied to analyze ex vivo human cadaver skin permeation samples.On applying Abreva?cream tube and Abreva?cream pump,the amount of doco-sanol that penetrated human cadaver skin at 48 h was 21.5±7.01 and 24.0±6.95 ng/mg,respectively.Accordingly,we concluded that the validated GC/SIM-MS was sensitive,specific,and suitable for quantifying docosanol as a quality control tool.This method can be used for routine analysis as a cost-effective alternative to other techniques.

7.
Eur J Pharm Biopharm ; 119: 81-90, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28596037

ABSTRACT

The main objective of this novel study was to develop chlorpheniramine maleate orally disintegrating films (ODF) using hot-melt extrusion technology and evaluate the characteristics of the formulation using in vitro and in vivo methods. Modified starch with glycerol was used as a polymer matrix for melt extrusion. Sweetening and saliva-simulating agents were incorporated to improve palatability and lower the disintegration time of film formulations. A standard screw configuration was applied, and the last zone of the barrel was opened to discharge water vapors, which helped to manufacture non-sticky, clear, and uniform films. The film formulations demonstrated rapid disintegration times (6-11s) and more than 95% dissolution in 5min. In addition, the films had characteristic mechanical properties that were helpful in handling and storage. An animal model was employed to determine the taste masking of melt-extruded films. The lead film formulation was subjected to a human panel for evaluation of extent of taste masking and disintegration.


Subject(s)
Anti-Allergic Agents/administration & dosage , Chlorpheniramine/administration & dosage , Drug Carriers/administration & dosage , Hot Temperature , Technology, Pharmaceutical/methods , Administration, Oral , Adolescent , Adult , Animals , Anti-Allergic Agents/chemical synthesis , Anti-Allergic Agents/metabolism , Chlorpheniramine/chemical synthesis , Chlorpheniramine/metabolism , Drug Carriers/chemical synthesis , Drug Carriers/metabolism , Drug Evaluation, Preclinical/methods , Female , Humans , Male , Rats , Rats, Sprague-Dawley , Solubility , Taste Perception/drug effects , Taste Perception/physiology , X-Ray Diffraction/methods , Young Adult
8.
AAPS PharmSciTech ; 17(1): 99-105, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26288942

ABSTRACT

The objective of this project was to investigate the potential of Kleptose Linecaps DE17 (KLD) in masking the unpleasant/bitter taste of therapeutic agents by hot melt extrusion (HME). Griseofulvin (GRI) and caffeine anhydrous (CA) were used as a bitter active pharmaceutical ingredient (API) model drugs. Thermogravimetric studies confirmed the stability of GRI, CA, and KLD at the employed extrusion temperatures. The differential scanning calorimetry (DSC) studies revealed a characteristic melting endotherm of GRI at 218-220°C and CA at 230-232°C in the physical mixtures as well as in all extrudates over the period of study, indicating the crystalline nature of drug. HME of KLD was achieved only in the presence of plasticizer. Among the several plasticizers investigated, xylitol showed improved processability of KLD at 15% w/w concentration. Dissolution studies of HME extrudates using simulated salivary medium exhibited ∼threefold less release compared to physical mixture at the end of 5 min (the lesser drug release, better the taste masking efficiency). Furthermore, the results from the sensory evaluation of products in human panel demonstrated strong bitter taste in the case of physical mixture compared to the HME formulation, suggesting the potential of Kleptose Linecaps DE17 as taste masking polymer in melt extruded form.


Subject(s)
Caffeine/chemistry , Griseofulvin/chemistry , Plasticizers/chemistry , Taste Perception/drug effects , Technology, Pharmaceutical/methods , Adolescent , Adult , Calorimetry, Differential Scanning/methods , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Female , Freezing , Hot Temperature , Humans , Male , Middle Aged , Polymers/chemistry , Solubility , Taste , Xylitol/chemistry , Young Adult
9.
Drug Dev Ind Pharm ; 41(10): 1575-81, 2015.
Article in English | MEDLINE | ID: mdl-25997365

ABSTRACT

INTRODUCTION: Onychomycosis, a common fungal infection in the finger and toe nails, affects approximately 2-8% of the worldwide population. Fungal infection is more complicated in those who suffer from conditions, such as diabetes, peripheral vascular diseases and compromised immune diseases. AREA COVERED: Onychomycosis treatment has been classified on the basis of location of infection in the toes and fingers and infectious agents (dermatophytes fungi, yeast and non-dermatophyte molds). In this review, the available therapies (traditional and device based) and their limitations for the treatment of onychomycosis have been discussed. EXPERT OPINION: The success rate with topical nail products has been minimal. The main reason for this poor success rate could be attributed to the lack of complete understanding of the pathophysiology of the disease and clinical pharmacokinetic data of drugs in the infected nail apparatus.


Subject(s)
Antifungal Agents/therapeutic use , Onychomycosis/drug therapy , Administration, Oral , Administration, Topical , Antifungal Agents/administration & dosage , Antifungal Agents/adverse effects , Humans , Laser Therapy , Onychomycosis/therapy , Photochemotherapy
10.
Int J Pharm ; 487(1-2): 167-76, 2015 Jun 20.
Article in English | MEDLINE | ID: mdl-25888797

ABSTRACT

The objective of this study was to develop caffeine citrate orally disintegrating tablet (ODT) formulations utilizing hot-melt extrusion technology and evaluate the ability of the formulation composition to mask the unpleasant bitter taste of the drug using in vitro and in vivo methods. Ethylcellulose, along with a suitable plasticizer, was used as a polymeric carrier. Pore forming agents were incorporated into the extruded matrix to enhance drug release. A modified screw configuration was applied to improve the extrusion processability and to preserve the crystallinity of the API. The milled extrudates were subjected to dissolution testing in an artificial salivary fluid and investigations using e-tongue, to assess the extent of masking of bitter taste of the API. There was an insignificant amount of drug released from the formulation in the salivary medium while over 80% of drug released within 30 min in 0.1N HCl. ODTs were also developed with the extrudate mixed with mannitol and crospovidone. The quality properties such as friability and disintegration time of the ODTs met the USP specifications. The lead extrudate formulations and the ODTs prepared using this formulation were subjected to human gustatory evaluation. The formulations were found to mask the unpleasant taste of caffeine citrate significantly.


Subject(s)
Caffeine/adverse effects , Citrates/adverse effects , Taste/drug effects , Caffeine/chemistry , Cellulose/analogs & derivatives , Chemistry, Pharmaceutical , Citrates/chemistry , Drug Carriers , Drug Compounding , Humans , Plasticizers , Solubility , Tablets , Taste Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...