Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 222: 113033, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36455362

ABSTRACT

The current study reports the design and construction of enzyme-free sensor using N-doped graphene quantum dots (N-GQDs)-decorated tin sulfide nanosheets (SnS2) for in situ monitoring of H2O2 secreted by human breast cancer cells. N-GQDs nanoparticles having a size of less than 1 nm were incorporated into SnS2 nanosheets to form an N-GQDs@SnS2 nanocomposite using a simple hydrothermal approach. The resulting hybrid material was an excellent electrocatalyst for the reduction of H2O2, owing to the combined properties of highly conductive N-GQDs and SnS2 nanosheets. The N-GQDs@SnS2-based sensing platform demonstrated substantial sensing ability, with a detection range of 0.0125-1128 µM and a limit of detection of 0.009 µM (S/N = 3). The sensing performance of N-GQDs@SnS2 was highly stable, selective, and reproducible. The practical application of the N-GQDs@SnS2 sensor was successfully demonstrated by quantifying H2O2 in lens cleaner, human urine, and saliva samples. Finally, the N-GQDs@SnS2 electrode was successfully applied for the real-time monitoring of H2O2 released from breast cancer cells and mouse fibroblasts. This study paves the way to designing efficient non-enzymatic electrochemical sensors for various biomolecule detection using a simple method.


Subject(s)
Breast Neoplasms , Graphite , Quantum Dots , Animals , Mice , Humans , Female , Graphite/chemistry , Quantum Dots/chemistry , Hydrogen Peroxide , Electrodes
2.
Nanoscale ; 14(39): 14789-14800, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36184995

ABSTRACT

The poor permeability of therapeutic agents across the blood-brain barrier and blood-tumor barrier is a significant barrier in glioma treatment. Low-density lipoprotein receptor-related protein (LRP-1) recognises a dual-targeting ligand, angiopep-2, which is overexpressed in the BBB and gliomas. Here, we have synthesized Ti@FeAu core-shell nanoparticles conjugated with angiopep-2 (Ti@FeAu-Ang nanoparticles) to target glioma cells and treat brain cancer via hyperthermia produced by a magnetic field. Our results confirmed that Ti@FeAu core-shell nanoparticles were superparamagnetic, improved the negative contrast effect on glioma, and exhibited a temperature elevation of 12° C upon magnetic stimulation, which implies potential applications in magnetic resonance imaging (MRI) and hyperthermia-based cancer therapy. Angiopep-2-decorated nanoparticles exhibited higher cellular uptake by C6 glioma cells than by L929 fibroblasts, demonstrating selective glioma targeting and improved cytotoxicity up to 85% owing to hyperthermia produced by a magnetic field. The in vivo findings demonstrated that intravenous injection of Ti@FeAu-Ang nanoparticles exhibited a 10-fold decrement in tumor volume compared to the control group. Furthermore, immunohistochemical analysis of Ti@FeAu-Ang nanoparticles showed that coagulative necrosis of tumor tissues and preliminary safety analysis highlighted no toxicity to the haematological system, after Ti@FeAu-Ang nanoparticle-induced hyperthermia treatment.


Subject(s)
Brain Neoplasms , Glioma , Magnetite Nanoparticles , Nanoparticles , Alloys , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/therapy , Cell Line, Tumor , Diagnostic Imaging , Drug Delivery Systems/methods , Glioma/drug therapy , Glioma/therapy , Humans , Ligands , Lipoproteins, LDL , Peptides , Theranostic Nanomedicine , Titanium/pharmacology
3.
Nanoscale ; 12(14): 7995, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32219258

ABSTRACT

Correction for 'A robust Mn@FeNi-S/graphene oxide nanocomposite as a high-efficiency catalyst for the non-enzymatic electrochemical detection of hydrogen peroxide' by Shaktivel Manavalan et al., Nanoscale, 2020, 12, 5961-5972.

4.
Nanoscale ; 12(10): 5961-5972, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32108852

ABSTRACT

Exploring high-efficiency, stable, and cost-effective electrocatalysts for electrochemical activities is greatly desirable and challenging. Herein, a newly designed hybrid catalyst with manganese-doped FeNi-S encapsulated into graphene oxide (Mn@FeNi-S/GO) with unprecedented electrocatalytic activity was developed by simple one-step heat treatment followed by sonication. X-ray powder diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), and N2 sorption isotherm demonstrated the successful formation of Mn@FeNi-S/GO. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) further confirmed the kinetic-favourable adsorption of hydrogen peroxide (H2O2) onto the surface sites of Mn@FeNi-S/GO. Additionally, the synergetic effects between Mn@FeNi-S and GO are regarded as significant contributors to an efficient electron transfer path, and they promote the capture of H2O2 in hybrid catalysts. Under an optimal condition, a biosensor-based Mn@FeNi-S/GO electrode exhibits a high sensitivity of 8.929 µA µM-1 cm-2 and a detection limit of 8.84 nM with a wide detection range for H2O2 and excellent selectivity; also, it is capable of online monitoring H2O2 derived from apple juice and human blood serum.

5.
ACS Omega ; 4(5): 8907-8918, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31459978

ABSTRACT

In this study, Liquidambar formosana tree leaves have been used as a renewable biomass precursor for preparing porous carbons (PCs). The PCs were produced by pyrolysis of natural waste of leaves after 10% KOH activation under a nitrogen atmosphere and characterized by a variety of state-of-the-art techniques. The PCs possess a large surface area, micro-/mesoporosity, and functional groups on its surface. A glassy carbon electrode modified with high PCs was explored as an efficient binder-free electrocatalyst material for the voltammetric determination of nitro isomers such as 3-nitroaniline (3-NA) and 4-nitroaniline (4-NA). Under optimal experimental conditions, the electrochemical detection of 3-NA and 4-NA was found to have a wide linear range of 0.2-115.6 and 0.5-120 µM and a low detection limit of 0.0551 and 0.0326 µM, respectively, with appreciable selectivity. This route not only enhanced the benefit from biomass wastes but also reduced the cost of producing electrode materials for electrochemical sensors. Additionally, the sensor was successfully applied in the determination of nitro isomers even in the presence of other common electroactive interference and real samples analysis (beverage and pineapple jam solutions). Therefore, the proposed method is simple, rapid, stable, sensitive, specific, reproducible, and cost-effective and can be applicable for real sample detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...