Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 126(22): 220501, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34152185

ABSTRACT

Variational quantum eigensolvers (VQEs) combine classical optimization with efficient cost function evaluations on quantum computers. We propose a new approach to VQEs using the principles of measurement-based quantum computation. This strategy uses entangled resource states and local measurements. We present two measurement-based VQE schemes. The first introduces a new approach for constructing variational families. The second provides a translation of circuit- to measurement-based schemes. Both schemes offer problem-specific advantages in terms of the required resources and coherence times.

2.
Nature ; 580(7804): E9, 2020 04.
Article in English | MEDLINE | ID: mdl-32322057

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 569(7756): 355-360, 2019 05.
Article in English | MEDLINE | ID: mdl-31092942

ABSTRACT

Hybrid classical-quantum algorithms aim to variationally solve optimization problems using a feedback loop between a classical computer and a quantum co-processor, while benefiting from quantum resources. Here we present experiments that demonstrate self-verifying, hybrid, variational quantum simulation of lattice models in condensed matter and high-energy physics. In contrast to analogue quantum simulation, this approach forgoes the requirement of realizing the targeted Hamiltonian directly in the laboratory, thus enabling the study of a wide variety of previously intractable target models. We focus on the lattice Schwinger model, a gauge theory of one-dimensional quantum electrodynamics. Our quantum co-processor is a programmable, trapped-ion analogue quantum simulator with up to 20 qubits, capable of generating families of entangled trial states respecting the symmetries of the target Hamiltonian. We determine ground states, energy gaps and additionally, by measuring variances of the Schwinger Hamiltonian, we provide algorithmic errors for the energies, thus taking a step towards verifying quantum simulation.

4.
Nat Commun ; 8(1): 1822, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29180753

ABSTRACT

Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.

5.
Phys Rev Lett ; 108(6): 065302, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22401082

ABSTRACT

We propose a method to probe time-dependent correlations of nontrivial observables in many-body ultracold lattice gases. The scheme uses a quantum nondemolition matter-light interface, first to map the observable of interest on the many-body system into the light and then to store coherently such information into an external system acting as a quantum memory. Correlations of the observable at two (or more) instances of time are retrieved with a single final measurement that includes the readout of the quantum memory. Such a method brings to reach the study of dynamics of many-body systems in and out of equilibrium by means of quantum memories in the field of quantum simulators.

SELECTION OF CITATIONS
SEARCH DETAIL
...