Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Hum Genet ; 108(2): 357-367, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33508234

ABSTRACT

Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.


Subject(s)
Carrier Proteins/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Glomerulosclerosis, Focal Segmental/genetics , Intranuclear Space/metabolism , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Nerve Tissue Proteins/genetics , Adult , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Line , Child , Child, Preschool , Codon, Nonsense , Developmental Disabilities/metabolism , Epilepsy/metabolism , Female , Glomerulosclerosis, Focal Segmental/metabolism , Humans , Kidney/metabolism , Male , Mice , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Phenotype , Podocytes/metabolism , Exome Sequencing
2.
Annu Rev Physiol ; 82: 365-390, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31743079

ABSTRACT

Chronic kidney disease (CKD) is a global health epidemic that accelerates cardiovascular disease, increases risk of infection, and causes anemia and bone disease, among other complications that collectively increase risk of premature death. Alterations in calcium and phosphate homeostasis have long been considered nontraditional risk factors for many of the most morbid outcomes of CKD. The discovery of fibroblast growth factor 23 (FGF23), which revolutionized the diagnosis and treatment of rare hereditary disorders of FGF23 excess that cause hypophosphatemic rickets, has also driven major paradigm shifts in our understanding of the pathophysiology and downstream end-organ complications of disordered mineral metabolism in CKD. As research of FGF23 in CKD has rapidly advanced, major new questions about its regulation and effects continuously emerge. These are promoting exciting innovations in laboratory, patient-oriented, and epidemiological research and stimulating clinical trials of new therapies and repurposing of existing ones to target FGF23.


Subject(s)
Fibroblast Growth Factors/genetics , Renal Insufficiency, Chronic/genetics , Animals , Fibroblast Growth Factor-23 , Humans , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/drug therapy
3.
Sci Rep ; 9(1): 14023, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31575945

ABSTRACT

In chronic kidney disease (CKD), elevated serum levels of the phosphate regulating hormone fibroblast growth factor (FGF) 23 have emerged as powerful risk factors for cardiovascular disease and death. Mechanistically, FGF23 can bind and activate fibroblast growth factor receptor (FGFR) 4 independently of α-klotho, the canonical co-receptor for FGF23 in the kidney, which stimulates left ventricular hypertrophy and hepatic production of inflammatory cytokines. FGF23 has also been shown to independently predict progression of renal disease, however, whether FGF23 and FGFR4 also contribute to CKD remains unknown. Here, we generated a mouse model with dual deletions of FGFR4 and α-klotho, and we induced CKD in mice with either global deletion or constitutive activation of FGFR4. We demonstrate that FGF23 is not capable of inducing phosphaturia via FGFR4 and that FGFR4 does not promote or mitigate renal injury in animal models of CKD. Taken together our results suggest FGFR4 inhibition as a safe alternative strategy to target cardiovascular disease and chronic inflammation in patients with CKD without interrupting the necessary phosphaturic effects of FGF23.


Subject(s)
Receptor, Fibroblast Growth Factor, Type 4/metabolism , Renal Insufficiency, Chronic/pathology , Animals , Disease Models, Animal , Disease Progression , Fibroblast Growth Factor-23 , Gene Knock-In Techniques , Glucuronidase/metabolism , Humans , Klotho Proteins , Mice , Mice, Knockout , Mice, Transgenic , Receptor, Fibroblast Growth Factor, Type 4/physiology , Risk Factors
6.
J Grad Med Educ ; 8(2): 180-4, 2016 May.
Article in English | MEDLINE | ID: mdl-27168884

ABSTRACT

Background Published clinical problem solving exercises have emerged as a common tool to illustrate aspects of the clinical reasoning process. The specific clinical reasoning terms mentioned in such exercises is unknown. Objective We identified which clinical reasoning terms are mentioned in published clinical problem solving exercises and compared them to clinical reasoning terms given high priority by clinician educators. Methods A convenience sample of clinician educators prioritized a list of clinical reasoning terms (whether to include, weight percentage of top 20 terms). The authors then electronically searched the terms in the text of published reports of 4 internal medicine journals between January 2010 and May 2013. Results The top 5 clinical reasoning terms ranked by educators were dual-process thinking (weight percentage = 24%), problem representation (12%), illness scripts (9%), hypothesis generation (7%), and problem categorization (7%). The top clinical reasoning terms mentioned in the text of 79 published reports were context specificity (n = 20, 25%), bias (n = 13, 17%), dual-process thinking (n = 11, 14%), illness scripts (n = 11, 14%), and problem representation (n = 10, 13%). Context specificity and bias were not ranked highly by educators. Conclusions Some core concepts of modern clinical reasoning theory ranked highly by educators are mentioned explicitly in published clinical problem solving exercises. However, some highly ranked terms were not used, and some terms used were not ranked by the clinician educators. Effort to teach clinical reasoning to trainees may benefit from a common nomenclature of clinical reasoning terms.


Subject(s)
Education, Medical/methods , Problem Solving , Problem-Based Learning , Teaching , Terminology as Topic , Humans , Internal Medicine/education
SELECTION OF CITATIONS
SEARCH DETAIL