Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Cell Biochem Funct ; 42(2): e3946, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379227

ABSTRACT

The underlying pathophysiology of nonhealing chronic wounds is poorly understood due to the changes occurring at the gene level and the complexity arising in their proteomic profile. Here, we elucidated the temporal and differential profile of the normal and diabetic wound-healing mediators along with their interactions and associated pathways. Skin tissues corresponding to normal and diabetic wounds were isolated at Days 0, 3, 6, and 9 representing different healing phases. Temporal gene expression was analyzed by quantitative real-time PCR. Concurrently, differential protein patterns in the wound tissues were identified by Nano LC-ESI-TOF mass spectrometry and later confirmed by Western blot analysis. Gene ontology annotation, protein-protein interaction, and protein pathway analysis were performed using DAVID, PANTHER, and STRING bioinformatics resources. Uniquely identified proteins (complement C3, amyloid beta precursor protein, and cytoplasmic linker associated protein 2) in the diabetic wound tissue implied that these proteins are involved in the pathogenesis of diabetic wound. They exhibit enhanced catalytic activity, trigger pathways linked with inflammation, and negatively regulate wound healing. However, in the normal wound tissue, axin 1, chondroitin sulfate proteoglycan 4, and sphingosine-1-phosphate receptor were identified, which are involved in proliferation, angiogenesis, and remodeling. Our findings demonstrate the correlation between elevated gene expression of tumor necrosis factor-α, interleukin (IL)-1ß, and identified mediators: aryl hydrocarbon receptor nuclear translocator, 5'-aminolevulinate synthase 2, and CXC-family, that inflicted an inflammatory response by activating downstream MAPK, JAK-STAT, and NF-κB pathways. Similarly, in normal wound tissue, the upregulated IL-4 and hepatocyte growth factor levels in conjunction with the identified proteins, serine/threonine-protein kinase mTOR and peroxisome proliferator-activated receptor gamma, played a significant role in the cellular response to platelet-derived growth factor stimulus, dermal epithelialization, and cell proliferation, processes associated with the repair mechanism. Furthermore, Western blot analysis indicated elevated levels of inflammatory markers and reduced levels of proliferative and angiogenic factors in the diabetic wound.


Subject(s)
Diabetes Mellitus , Wound Healing , Humans , Amyloid beta-Peptides/metabolism , Proteomics , Skin/pathology , Diabetes Mellitus/metabolism
2.
Biol Methods Protoc ; 9(1): bpad027, 2024.
Article in English | MEDLINE | ID: mdl-38229687

ABSTRACT

Acute leukemia (AL) is a critical neoplasm of white blood cells with two main subtypes: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). This study is focused on understanding the association of the preleukemic disease aplastic anemia (APA) with ALL and AML at metallomic level, using healthy subjects as a control. In this study, a validated and efficient inductively coupled plasma-mass spectrometry/MS-based workflow was employed to profile a total of 13 metallomic features. The study encompassed 41 patients with AML, 62 patients with ALL, 46 patients with APA, and 55 age-matched healthy controls. The metallomic features consisted of eight essential elements (Ca, Co, Cu, Fe, Mg, Mn, Se, and Zn) and five non-essential/toxic elements (Ag, Cd, Cr, Ni, and Pb). Six out of the 13 elements were found to be substantially different (P < .05) using absolute concentrations between serum samples of AL (ALL and AML) and preleukemia (APA) patients in comparison with healthy subjects. Elements including magnesium, calcium, iron, copper, and zinc were upregulated and only one element (chromium) was downregulated in serum samples of disease when compared with healthy subjects. Through the utilization of both univariate tests and multivariate classification modeling, it was determined that chromium exhibited a progressive behavior among the studied elements. Specifically, chromium displayed a sequential upregulation from healthy individuals to preleukemic disease (APA), and ultimately in patients diagnosed with ALL. Overall, metallomic-based biomarkers may have the utility to predict the association of APA with ALL.

3.
ACS Appl Mater Interfaces ; 16(1): 1688-1704, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38110286

ABSTRACT

Fluorescent metal-organic frameworks (MOFs) are promising sensing materials with tunable and robust structural properties and remarkable luminescent capabilities. In this study, a novel dual-emission fluorescent metal-organic framework (EY@MOF-5) composite is synthesized by a one-pot bottle-around-ship approach. Eosin Y (EY) is encapsulated in MOF-5 to enhance its fluorescence properties and selectivity, effectively addressing typical MOF-5 limitations. EY@MOF-5 serves as a versatile dual-functional fluorescent sensor for two different analytes, daclatasvir (DCT) and nitenpyram (NTP), showing an impressive linear range of 10-200 nM and 0.1-300 µM, with detection limits of 233 pM and 65 nM, respectively. The established method is ultrafast, highly sensitive, and extremely selective for DCT and NTP detection in complex biological and food samples. Fluorescence results are compared and validated with the recommended UPLC method. Then, a smartphone-integrated sensing system is introduced for on-site, real-time, and quantitative analysis of DCT and NTP. The smartphone-assisted intelligent sensing method manifests promising results for DCT and NTP monitoring in biological and food samples, demonstrating its promising potential for the on-site detection of biologically and environmentally significant analytes.

4.
Nanoscale Adv ; 5(19): 5214-5255, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37767045

ABSTRACT

The present review focuses on the widely used graphitic carbon nitride (g-C3N4)-tungsten oxide (WO3) nanocomposite in photocatalytic applications. These catalysts are widely employed due to their easy preparation, high physicochemical stability, nontoxicity, electron-rich properties, electronic band structure, chemical stability, low cost, earth-abundance, high surface area, and strong absorption capacity in the visible range. These sustainable properties make them predominantly attractive and unique from other photocatalysts. In addition, graphitic carbon nitride (g-C3N4) is synthesized from nitrogen-rich precursors; therefore, it is stable in strong acid solutions and has good thermal stability up to 600 °C. This review covers the historical background, crystalline phases, density-functional theory (DFT) study, synthesis method, 0-D, 1-D, 2-D, and 3-D materials, oxides/transition/nontransition metal-doped, characterization, and photocatalytic applications of WO3/g-C3N4. Enhancing the catalytic performance strategies such as composite formation, element-doping, heterojunction construction, and nanostructure design are also summarized. Finally, the future perspectives and challenges for WO3/g-C3N4 composite materials are discussed to motivate young researchers and scientists interested in developing environment-friendly and efficient catalysts.

5.
J Agric Food Chem ; 71(34): 12839-12848, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37528805

ABSTRACT

Veterinary drug residues present in foods can pose severe health threats to the population. The present study aims to develop a high-resolution mass spectral library of 158 veterinary drugs of 16 different classes for their rapid identification in food samples through liquid chromatography-high-resolution electrospray ionization-tandem mass spectrometry (LC-HR-ESI-MS/MS). Standard drugs were pooled according to their log P values and exact masses before analysis. Spectra were collected at system automated collision energy, i.e., of 25-60 eV and four predetermined collision energies (10, 20, 30, and 40 eV) for each compound using a schedule precursor list of [M + H]+, [M + Na]+, and [M + NH4]+ ions. The utility of the developed database was checked by analyzing food samples. A total of 17 veterinary drugs based on the reference standard retention times (RTs), HR-MS spectra, and MS/MS spectra were identified in the analyzed samples. Moreover, five veterinary drugs were selected for quantitative analysis, including doxycycline hyclate, lincomycin, sulfasalazine, moxifloxacin, and diphenoxylate, using liquid chromatography-ion trap mass-spectrometry (LC-IT-MS). Concentrations of the drug were obtained to vary from 0.0805 to 0.9731 mg/kg in food samples and were found to be exceeded in most of the cases as per the maximum residue levels described by Food and Agriculture Organization (FAO)/World Health Organization (WHO). The MS data were submitted to the MetaboLights online database (MTBLS2914). This study will help in the high-throughput screening of multiclass veterinary drugs in foodstuffs.


Subject(s)
Tandem Mass Spectrometry , Veterinary Drugs , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Electrospray Ionization/methods , Veterinary Drugs/analysis , Gas Chromatography-Mass Spectrometry/methods , Chromatography, Liquid/methods , Ions/chemistry , Chromatography, High Pressure Liquid
6.
Mol Omics ; 19(9): 697-705, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37540205

ABSTRACT

Globally, obesity is a severe health issue. A more precise and practical approach is required to enhance clinical care and drug development. The FTO (fat mass and obesity-associated) gene variant rs1421085 is strongly associated with an increased susceptibility to obesity in numerous populations; however, the precise mechanism behind this association concerning metabolomics is still not understood. This study aims to examine the association between metabolites and obesity-related anthropometric traits based on the variant FTO rs1421085. This study was based on a case-control design involving a total of 542 participants including overweight/obese cases and healthy controls. The blood samples were collected from all the participants. The isolated serum samples were subjected to untargeted metabolomics using GC-MS. The isolated DNA samples were genotyped for the FTO rs1421085 variant. Initially, a total of 42 metabolites were identified on GC-MS, which were subjected to further association analyses. The study observed a significant association of two metabolites, glycerol and 2,3-dihydroxypropyl stearate with FTO gene variant rs1421085 and obesity-related anthropometric traits including % BF, WHtR, WC, and HC. The CT genotype of FTO rs1421085 may greatly increase the risk of overweight/obesity by changing the lipid metabolism-related metabolites. Therefore, this study highlights the significance of biochemical networks in the progression of obesity in carriers of the FTO rs1421085 risk genotype.


Subject(s)
Lipid Metabolism , Overweight , Humans , Overweight/genetics , Lipid Metabolism/genetics , Polymorphism, Single Nucleotide , Obesity/genetics , Genotype , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
7.
Langmuir ; 39(33): 11571-11581, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37549018

ABSTRACT

Superhydrophobic cotton fabrics with multifunctional features are highly desired in domestic and outdoor applications. However, the short coating longevity and hazardous reagents significantly reduce their commercial-scale applications. Herein, we introduce CeO2 nanoparticles and stearic acid (SA) to develop a fluorine-free, durable superhydrophobic cotton fabric that mimics the lotus effect. The pristine cotton fabric is treated with APTES-functionalized CeO2 nanoparticles by immersion followed by a dip and drying treatment with a 2% myristic acid solution. This sequential process creates a stable superhydrophobic cotton fabric (SA/CeO2-cotton fabric) with a water contact angle of 158° and a water sliding angle of 5°. The results are attributed to the combined effect of CeO2 nanoparticles and stearic acid that enhances surface roughness and reduces surface sorption energy. APTES facilitates the durable attachment of CeO2 nanoparticles and stearic acid to the cotton fabric. The modified cotton fabric is characterized by advanced analytical tools, demonstrating enhanced superhydrophobicity, self-cleaning, and antiwater absorption properties. Additionally, it exhibits remarkable UV-blocking (UPF 542) and antibacterial properties. The designed superhydrophobic cotton fabric unveils good mechanical, thermal, and chemical durability. The proposed strategy is simple, green, and economical and can be used commercially for functional fabric preparation.

8.
Bioorg Chem ; 140: 106768, 2023 11.
Article in English | MEDLINE | ID: mdl-37586133

ABSTRACT

Pharmacological induction of fetal hemoglobin has proven to be a promising therapeutic intervention in ß-hemoglobinopathies by reducing the globin chain imbalance and inhibiting sickle cell polymerization. Fagonia indica has shown therapeutic relevance to ß-thalassemia. Therefore, we study the ethnopharmacological potential of Fagonia indica and its biomarker compounds for their HbF induction ability for the treatment of ß-thalassemia. Here, we identify, compound 8 (triterpenoid glycosides) of F. indica. as a prominent HbF inducer in-vitro and in-vivo. Compound 8 showed potent erythroid differentiation, enhanced cellular proliferation, ample accumulation of total hemoglobin, and a strong notion of γ-globin gene expression in K562 cultures. Compound 8 treatment also revealed strong induction of erythroid differentiation and fetal hemoglobin mRNA and protein in adult erythroid precursor cells. This induction was associated with simultaneous downregulation of BCL11A and SOX6, and overexpression of the GATA-1 gene, suggesting a compound 8-mediated partial mechanism involved in the reactivation of fetal-like globin genes. The in vivo study with compound 8 (10 mg/kg) in ß-YAC mice resulted in significant HbF synthesis demonstrated by the enhanced level of F-cells (84.14 %) and an 8.85-fold increase in the γ-globin gene. Overall, the study identifies compound 8 as a new HbF-inducing entity and provides an early "proof-of-concept" to enable the initiation of preclinical and clinical studies in the development of this HbF-inducing agent for ß-thalassemia.


Subject(s)
Hemoglobinopathies , Triterpenes , beta-Thalassemia , Humans , Animals , Mice , gamma-Globins/genetics , gamma-Globins/metabolism , beta-Thalassemia/drug therapy , beta-Thalassemia/genetics , beta-Thalassemia/metabolism , Glycosides/pharmacology , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism , K562 Cells , Transcription Factors , Gene Expression , Repressor Proteins
9.
Article in English | MEDLINE | ID: mdl-37291774

ABSTRACT

BACKGROUND: Tolfenamic acid (TA) belongs to the fenamates class of non-steroidal anti-inflammatory drugs. Insufficient information is available regarding the availa-bility of a reliable and validated stability-indicating method for the assay of TA. OBJECTIVE: A relatively simple, rapid, accurate, precise, economical, robust, and stability-indicating RP-HPLC method has been developed to determine TA in pure and tablet dosage forms. METHODS: The method was validated according to the ICH guideline, and parameters like linearity, range, selectivity, accuracy, precision, robustness, specificity, and solution stability were determined. TLC and FTIR spectrometry were used to ascertain the purity of TA. The specificity was determined with known impurities and after performing forced degradation, while the robustness was established by Plackett-Burman's experimental design. The mobile phase used for the analysis was acetonitrile and water (90:10, v/v) at pH 2.5. The detection of the active drug was made at 280 nm using a C18 column (tR = 4.3 min.). The method's ap-plicability was also checked for the yellow polymorphic form of TA. RESULTS: The results indicated that the method is highly accurate (99.39-100.80%), precise (<1.5% RSD), robust (<2% RSD), and statistically comparable to the British Pharmacopoeia method with better sensitivity and specificity. CONCLUSION: It was observed that the stress degradation studies do not affect the method's accuracy and specificity. Hence the proposed method can be used to assay TA and its tablet dosage form.

10.
Magn Reson Chem ; 61(8): 497-503, 2023 08.
Article in English | MEDLINE | ID: mdl-37340817

ABSTRACT

From the n-butanol soluble fraction of the ethanol extract of the medicinal plant Olax subscorpioidea, a previously unreported rotameric biflavonoid glycoside constituted of 4'-O-methylgallocatechin-(4α → 8)-4'-O-methylgallocatechin as aglycone named olasubscorpioside C (1) along with the known 4'-O-methylgallocatechin (2) were isolated. Their structures were determined on the basis of spectrometric and spectroscopic techniques including HRFABMS, 1 H and 13 C NMR, DEPT 135o , HSQC, HMBC, ROESY, and CD followed by comparison with the reported data.


Subject(s)
Biflavonoids , Glycosides , Glycosides/chemistry , Plant Extracts/chemistry , Magnetic Resonance Spectroscopy , Ethanol , Molecular Structure
11.
Biomed Chromatogr ; 37(6): e5616, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36882186

ABSTRACT

Hypoxia and acidosis are ubiquitous hallmarks of the tumor microenvironment (TME), and in most solid cancers they have been linked to rewired cancer cell metabolism. These TME stresses are linked to changes in histone post-translational modifications (PTMs) such as methylation and acetylation, which lead to tumorigenesis and drug resistance. Hypoxic and acidotic TME cause changes in histone PTMs by impacting the activities of histone-modifying enzymes. These alterations are yet to be extensively explored in oral squamous cell carcinoma (OSCC), one of the most prevalent cancers in developing countries. Hypoxic, acidotic, and hypoxia with acidotic TME affecting histone acetylation and methylation in the CAL27 OSCC cell line was studied using LC-MS-based proteomics. The study identified several well-known histone marks, in the context of their functionality in gene regulation, such as H2AK9Ac, H3K36me3, and H4K16Ac. The results provide insights into the histone acetylation and methylation associated with hypoxic and acidotic TME, causing changes in their level in a position-dependent manner in the OSCC cell line. Hypoxia and acidosis, separately and in combination, cause differential impacts on histone methylation and acetylation in OSCC. The work will help uncover tumor cell adaptation to these stress stimuli in connection with histone crosstalk events.


Subject(s)
Acidosis , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Histones/genetics , Histones/metabolism , Methylation , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Acetylation , Tumor Microenvironment , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Protein Processing, Post-Translational
12.
Eur J Pharm Sci ; 185: 106436, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36965642

ABSTRACT

PURPOSE: Antibiotic resistance development in pathogenic bacteria like Klebsiella pneumoniae seriously threatens humankind. Therefore, it is important to understand the interaction of bacteria with antibiotic agents and how it acquires resistance at the molecular level. The current study describes metabolomics analysis of K. pneumoniae sensitive strains and its gentamicin-tolerant (resistant) strains. METHODS: K. pneumoniae strains were treated at five different concentrations of gentamicin, increasing from a low dose (16.2 µg/mL) to the highest dose (250 µg/mL) at three incubation time periods (24 h, 48 h, and 72 h). Colonies obtained at various concentrations and time intervals were subjected to metabolomic analysis using GC-MS. RESULTS: A drastic change was observed in the morphology of K. pneumoniae colonies with the increasing gentamicin concentration. Moreover, K. pneumoniae strains grown at the highest concentration (250 µg/mL) were found tolerant to 1 mg/mL gentamicin (4-folds) and considered resistant strains. A total of 459 metabolites were identified. A sequential down/up-regulation in 4, 3, and 4 metabolites were observed in association with the increasing gentamicin concentration at 24 h, 48 h, and 72 h, respectively. While with the comparative analysis of resistant and sensitive strains, a total of seven down- and sixteen up-regulated metabolites were observed. The concentration of some fatty acids and sugars have been found to increase while, a few metabolites like inosine, tyrosine, 1-propionylproline, and 2-hydroxyacetic acid have been found down-regulated in resistant samples. CONCLUSION: These regulator metabolites might be associated with resistance development in K. pneumoniae against gentamicin and might be helpful in the rapid detection of gentamicin-resistant clinical strains.


Subject(s)
Gentamicins , Klebsiella pneumoniae , Gentamicins/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Microbial Sensitivity Tests
13.
Nat Prod Res ; : 1-11, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36815546

ABSTRACT

A new 3-arylcoumarin, 7-hydroxy-6-(1,1-dimethylallyl)-2',5'-dihydroxy-4'-(3,3dimethylprenyl)-3-arylcoumarin (desmoarylcoumarin) 1, a previously unreported oleanane-type triterpenoid, 3ß,22ß,23-trihydroxyolean-12-en (episoyasapogenol B) 2, together with five known flavonoids including darbergioidin (3), isoferreirin (4), quercetin (5), vitexin (6), swertizin (7), and one carbohydrate, sucrose (8) were isolated from the methanolic extract of the roots of Desmodium salicifolium. Their structures were elucidated mainly by extensive spectroscopic analysis (1D and 2D) and mass spectrometric (HRFAB-MS) data. The methanolic extract, EtOAc and n-BuOH fractions as well as some isolated compounds were assessed for their antibacterial and antioxidant activities. The EtOAc fraction exhibited moderate activity against Enterococcus faecalis with MIC value of 128 µg/mL. The methanolic extract and the EtOAc fraction displayed DPPH scavenging activity with EC50 values of 5.99 and 2.06 µg/mL, respectively. Compound 1 showed a moderate antibacterial activity against Enterococcus faecalis with a MIC of 16 µg/mL. It also showed moderate DPPH scavenging activity.

14.
Int J Biol Macromol ; 232: 123435, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36716834

ABSTRACT

Ischemic heart disease (IHD) is the leading cause of mortality worldwide. Metalloproteins have been linked to human health and diseases. The molecular functions of metalloproteins in IHD is not well understood and require further exploration. The objective of this study was to find out the role of metalloproteins in the pericardial fluid of IHD patients having normal (EF > 45) and impaired (EF < 45) left ventricular ejection fraction (LVEF). IHD patients were grouped into two categories: LVEF<45 (n = 12) and LVEF >45 (n = 33). Pooled samples of pericardial fluid were fractionated by using ZOOM-isoelectric focusing (IEF) followed by further processing using one-dimensional gel electrophoresis (1D SDS-PAGE) and filter-aided sample preparation (FASP). Tryptic peptides of each fraction and differential bands were then analyzed by nano-LC-ESI-MS/MS. Protein identification was performed through a Mascot search engine using NCBI-Prot and SwissProt databases. A total of 1082 proteins including 154 metalloproteins were identified. In the differential bands, 60 metalloproteins were identified, while 115 metalloproteins were identified in all ZOOM-IEF fractions. Twelve differentially expressed metalloproteins were selected in the intense bands according to their molecular weight (MW) and isoelectric point (pI). The 12 differentially expressed metalloprotein includes ceruloplasmin, Prothrombin, Vitamin K-dependent protein, Fibulin-1, Ribosomal protein S6 kinase alpha-6, nidogen, partial, Serum albumin, Hemopexin, C-reactive protein, Serum amyloid P-component, and Intelectin-1 protein which were all up-regulated while serotransferrin is the only metalloprotein that was down-regulated in impaired (LVEF<45) group. Among the metalloproteins, Zn-binding proteins are 36.5 % followed by Ca-binging 32.2 %, and Fe-binging 12.2 %. KEGG, pathway analysis revealed the association of ceruloplasmin and serotransferrin with the ferroptosis pathway. In conclusion, 154 metalloproteins were identified of them the Zn-binding protein followed by Ca-binding and Fe-binding proteins were the most abundant metalloproteins. The two metalloproteins, the Cu-binding protein ceruloplasmin, and Fe-binding protein serotransferrin are involved in the ferroptosis pathway, an iron-dependent form of regulated cell death that has been linked to cardiac pathology, especially in IHD patients having impaired systolic (LVEF<45) dysfunction. However, further research is required to validate these findings.


Subject(s)
Metalloproteins , Myocardial Ischemia , Humans , Transferrin , Tandem Mass Spectrometry/methods , Stroke Volume , Ceruloplasmin , Ventricular Function, Left
15.
Int J Mol Sci ; 23(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36555396

ABSTRACT

ß-thalassemia is one of the most common monogenic disorders and a life-threatening health issue in children. A cost-effective and safe therapeutic approach to treat this disease is to reactivate the γ-globin gene for fetal hemoglobin (HbF) production that has been silenced during infancy. Hydroxyurea (HU) is the only FDA approved HbF inducer. However, its cytotoxicity and inability to respond significantly in all patients pose a need for an HbF inducer with better efficacy. The study describes the serum metabolic alteration in ß-YAC transgenic mice treated with Tenofovir disoproxil fumarate (TDF) (n = 5), a newly identified HbF inducer, and compared to the mice groups treated with HU (n = 5) and untreated control (n = 5) using gas chromatography-mass spectrometry. Various univariate and multivariate statistical analyses were performed to identify discriminant metabolites that altered the biological pathways encompassing galactose metabolism, lactose degradation, and inositol. Furthermore, the decreased concentrations of L-fucose and geraniol in TDF-treated mice help in recovering towards normal, decreasing oxidative stress even much better than the HU-treated mice. The proposed study suggested that TDF can reduce the deficiency of blood required for ß-thalassemia and can be used for the preclinical study at phase I/II for fetal hemoglobin production.


Subject(s)
beta-Thalassemia , Mice , Animals , Mice, Transgenic , Fetal Hemoglobin , Tenofovir/pharmacology , Tenofovir/therapeutic use , Hydroxyurea/therapeutic use , Metabolomics
16.
Metabolites ; 12(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36355102

ABSTRACT

This paper describes eight new triterpenoid saponins, including afzeliioside A (1), four acetylated afzeliiosides as pairs of inseparable regioisomers, called afzeliiosides B/C (2/3) and D/E (4/5), afzeliiosides F-H (6-8), and a known impatiprin C (9), which were isolated from the n-BuOH fraction of the liana of Microglossa afzelii. Their structures were established mainly by extensive spectroscopic analysis, including 1D and 2D NMR, HRFAB-MS, tandem ESI-MS/MS, and chemical methods, as well as a comparison of their spectral data with those of related compounds. All the isolates were screened for their cytotoxic activity against the CAL-27 oral squamous carcinoma cell line. Only compounds 4/5 (EC50 = 36.0 µg/mL (32.7 µM)) exhibited moderate cytotoxic activity. This work presents the first chemical and biological investigation of Microglossa afzelii and reports, for the first time, on the isolation of saponins in the genus Microglossa.

17.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35890199

ABSTRACT

Data-independent acquisition (DIA) based strategies have been explored in recent years for improving quantitative analysis of metabolites. However, the data analysis is challenging for DIA methods as the resulting spectra are highly multiplexed. Thus, the DIA mode requires advanced software analysis to facilitate the data deconvolution process. We proposed a pipeline for quantitative profiling of pharmaceutical drugs and serum metabolites in DIA mode after comparing the results obtained from full-scan, Data-dependent acquisition (DDA) and DIA modes. using open-access software. Pharmaceutical drugs (10) were pooled in healthy human serum and analysed by LC-ESI-QTOF-MS. MS1 full-scan and Data-dependent (MS2) results were used for identification using MS-DIAL software while deconvolution of MS1/MS2 spectra in DIA mode was achieved by using Skyline software. The results of acquisition methods for quantitative analysis validated the remarkable analytical performance of the constructed workflow, proving it to be a sensitive and reproducible pipeline for biological complex fluids.

18.
Pak J Pharm Sci ; 35(2(Special)): 695-699, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35668572

ABSTRACT

Fungal transformation of a norethisterone (17α-ethynylestra-4-en-17ß-ol-3-one) (1) by using Macrophomina phaseolina and Paecilomyces variotii was studied. A new metabolite, 17α-hydroxymethyl-androst-4-en-11ß-ol-3-one-17ß-acetate (2) with novel changes and a known metabolite, 17α-ethynylestradiol (3) were obtained from 1 by using M. phaseolina and P. variotii, respectively. Based on various spectroscopic techniques, the structures of both metabolites were characterized. The antimicrobial activities of 1-3 were also evaluated. Compound 1 was found to be moderately active against Salmonella paratyphi while 1-3 were almost inactive against other microorganisms.


Subject(s)
Anti-Infective Agents , Progestins , Anti-Infective Agents/pharmacology , Biotransformation , Norethindrone/pharmacology , Steroids
19.
MethodsX ; 9: 101735, 2022.
Article in English | MEDLINE | ID: mdl-35669084

ABSTRACT

The present research aims to propose a simple and accurate technique for the analysis of Rifaximin in the presence of its stress degradation products and analysis of degradation products by LC-MS/MS analysis. Rifaximin was submitted to forced degradation under the acid hydrolysis condition as prescribed by the ICH. The extract was prepared by firstly treated with HCl and heated about 4 to 8 h. The filtrate was collected and separated using dichloromethane followed by evaporation in rotary evaporator to obtain a solid crude extract which was then stored under refrigeration at -80 °C. Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS/MS) was utilized to identify products in the drug sample. The data processing results revealed the presence of 9 products in the degraded sample of Rifaximin. This data article contains the m/z [M + H +] values, molecular formula, retention times and the comprehensive list of m/z values detected during the LC- QTOF- MS/MS analysis.

20.
Eur J Pharmacol ; 927: 175036, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35618038

ABSTRACT

Sickle-cell disease (SCD) and ß-thalassemia are public health issues that affect people all over the world. Fetal hemoglobin (HbF) induction is a molecular intervention, including hydroxyurea, which has made an effort to improve current treatment. Tenofovir disoproxil fumarate (TDF) is formerly reported with improving levels of hemoglobin, mean corpuscular hemoglobin (MCH), and mean corpuscular volume (MCV). Hence, in this preclinical investigation, human peripheral whole blood-derived CD34+ progenitor cells were cultured to prove the efficacy of TDF on erythroid proliferation, differentiation, γ-globin gene expression regulation, and ultimately HbF production. We observed that TDF increased the proliferation of immature erythroid cells, delayed the terminal erythroid maturation without cytotoxicity as correlated with other HbF inducers. Here, the presented data show that TDF can induce HbF expression by up-regulating the γ-globin gene transcription up to 7.1 ± 0.46-fold and subsequently increased the F-cells (10.79 ± 1.9-fold) population in terminally differentiated erythroid cells. Furthermore, our findings demonstrated that TDF-mediated γ-globin gene induction and HbF production was associated with down-fold regulation of BCL11A and SOX6, and their corresponding trans-acting regulators, FOP, KLF1, and GATA1. Collectively, our findings suggest TDF as an effective inducer of HbF in CD34+ cells and pave the way to put forward the assessment of TDF as a new potential therapy in treating ß-hemoglobinopathies.


Subject(s)
Fetal Hemoglobin , gamma-Globins , Antigens, CD34/metabolism , Humans , Stem Cells/metabolism , Tenofovir/pharmacology , Trans-Activators , gamma-Globins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...