Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(1): e2310727120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38150499

ABSTRACT

Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Šand harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.


Subject(s)
Protein Phosphatase 2 , Protein Phosphatase 2/metabolism , Jordan , Phosphorylation , Mutation , Holoenzymes/genetics , Holoenzymes/metabolism
2.
J Biol Chem ; 299(9): 105154, 2023 09.
Article in English | MEDLINE | ID: mdl-37572851

ABSTRACT

Genetic germline variants of PPP2R5D (encoding: phosphoprotein phosphatase 2 regulatory protein 5D) result in PPP2R5D-related disorder (Jordan's Syndrome), which is characterized by intellectual disability, hypotonia, seizures, macrocephaly, autism spectrum disorder, and delayed motor skill development. The disorder originates from de novo single nucleotide mutations, generating missense variants that act in a dominant manner. Pathogenic mutations altering 13 different amino acids have been identified, with the E198K variant accounting for ∼40% of reported cases. However, the generation of a heterozygous E198K variant cell line to study the molecular effects of the pathogenic mutation has been challenging. Here, we use CRISPR-PRIME genomic editing to introduce a transition (c.592G>A) in a single PPP2R5D allele in HEK293 cells, generating E198K-heterozygous lines to complement existing E420K variant lines. We generate global protein and phosphorylation profiles of WT, E198K, and E420K cell lines and find unique and shared changes between variants and WT cells in kinase- and phosphatase-controlled signaling cascades. We observed ribosomal protein S6 (RPS6) hyperphosphorylation as a shared signaling alteration, indicative of increased ribosomal protein S6-kinase activity. Treatment with rapamycin or an RPS6-kinase inhibitor (LY2584702) suppressed RPS6 phosphorylation in both, suggesting upstream activation of mTORC1/p70S6K. Intriguingly, our data suggests ERK-dependent activation of mTORC1 in both E198K and E420K variant cells, with additional AKT-mediated mTORC1 activation in the E420K variant. Thus, although upstream activation of mTORC1 differs between PPP2R5D-related disorder genotypes, inhibition of mTORC1 or RPS6 kinases warrants further investigation as potential therapeutic strategies for patients.


Subject(s)
Abnormalities, Multiple , Humans , Autism Spectrum Disorder , HEK293 Cells , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphorylation , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Proteomics , Ribosomal Protein S6/genetics , Ribosomal Protein S6/metabolism , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology
3.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066309

ABSTRACT

An increasing number of mutations associated with devastating human diseases are diagnosed by whole-genome/exon sequencing. Recurrent de novo missense mutations have been discovered in B56δ (encoded by PPP2R5D), a regulatory subunit of protein phosphatase 2A (PP2A), that cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Single-particle cryo-EM structures show that the PP2A-B56δ holoenzyme possesses closed latent and open active forms. In the closed form, the long, disordered arms of B56δ termini fold against each other and the holoenzyme core, establishing dual autoinhibition of the phosphatase active site and the substrate-binding protein groove. The resulting interface spans over 190 Šand harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is close to an allosteric network responsive to activation phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations perturb the activation phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the wild variant.

4.
J Ovarian Res ; 15(1): 120, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36324187

ABSTRACT

A leading theory for ovarian carcinogenesis proposes that inflammation associated with incessant ovulation is a driver of oncogenesis. Consistent with this theory, nonsteroidal anti-inflammatory drugs (NSAIDs) exert promising chemopreventive activity for ovarian cancer. Unfortunately, toxicity is associated with long-term use of NSAIDs due to their cyclooxygenase (COX) inhibitory activity. Previous studies suggest the antineoplastic activity of NSAIDs is COX independent, and rather may be exerted through phosphodiesterase (PDE) inhibition. PDEs represent a unique chemopreventive target for ovarian cancer given that ovulation is regulated by cyclic nucleotide signaling. Here we evaluate PDE10A as a novel therapeutic target for ovarian cancer. Analysis of The Cancer Genome Atlas (TCGA) ovarian tumors revealed PDE10A overexpression was associated with significantly worse overall survival for patients. PDE10A expression also positively correlated with the upregulation of oncogenic and inflammatory signaling pathways. Using small molecule inhibitors, Pf-2545920 and a novel NSAID-derived PDE10A inhibitor, MCI-030, we show that PDE10A inhibition leads to decreased ovarian cancer cell growth and induces cell cycle arrest and apoptosis. We demonstrate these pro-apoptotic properties occur through PKA and PKG signaling by using specific inhibitors to block their activity. PDE10A genetic knockout in ovarian cancer cells through CRISP/Cas9 editing lead to decreased cell proliferation, colony formation, migration and invasion, and in vivo tumor growth. We also demonstrate that PDE10A inhibition leads to decreased Wnt-induced ß-catenin nuclear translocation, as well as decreased EGF-mediated activation of RAS/MAPK and AKT pathways in ovarian cancer cells. These findings implicate PDE10A as novel target for ovarian cancer chemoprevention and treatment.


Subject(s)
Ovarian Neoplasms , beta Catenin , Female , Humans , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , beta Catenin/genetics , beta Catenin/metabolism , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , ras Proteins/metabolism
5.
Cancer Prev Res (Phila) ; 14(11): 995-1008, 2021 11.
Article in English | MEDLINE | ID: mdl-34584001

ABSTRACT

Previous studies have reported that phosphodiesterase 10A (PDE10) is overexpressed in colon epithelium during early stages of colon tumorigenesis and essential for colon cancer cell growth. Here we describe a novel non-COX inhibitory derivative of the anti-inflammatory drug, sulindac, with selective PDE10 inhibitory activity, ADT 061. ADT 061 potently inhibited the growth of colon cancer cells expressing high levels of PDE10, but not normal colonocytes that do not express PDE10. The concentration range by which ADT 061 inhibited colon cancer cell growth was identical to concentrations that inhibit recombinant PDE10. ADT 061 inhibited PDE10 by a competitive mechanism and did not affect the activity of other PDE isozymes at concentrations that inhibit colon cancer cell growth. Treatment of colon cancer cells with ADT 061 activated cGMP/PKG signaling, induced phosphorylation of oncogenic ß-catenin, inhibited Wnt-induced nuclear translocation of ß-catenin, and suppressed TCF/LEF transcription at concentrations that inhibit cancer cell growth. Oral administration of ADT 061 resulted in high concentrations in the colon mucosa and significantly suppressed the formation of colon adenomas in the Apc+/min-FCCC mouse model of colorectal cancer without discernable toxicity. These results support the development of ADT 061 for the treatment or prevention of adenomas in individuals at risk of developing colorectal cancer. PREVENTION RELEVANCE: PDE10 is overexpressed in colon tumors whereby inhibition activates cGMP/PKG signaling and suppresses Wnt/ß-catenin transcription to selectively induce apoptosis of colon cancer cells. ADT 061 is a novel PDE10 inhibitor that shows promising cancer chemopreventive activity and tolerance in a mouse model of colon cancer.


Subject(s)
Colonic Neoplasms , beta Catenin , Animals , Carcinogenesis , Colon/pathology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/prevention & control , Mice , Phosphodiesterase Inhibitors/pharmacology , Sulindac/pharmacology
6.
Biochem Pharmacol ; 109: 14-26, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27002182

ABSTRACT

Cantharidin is a natural toxin and an active constituent in a traditional Chinese medicine used to treat tumors. Cantharidin acts as a semi-selective inhibitor of PPP-family ser/thr protein phosphatases. Despite sharing a common catalytic mechanism and marked structural similarity with PP1C, PP2AC and PP5C, human PP4C was found to be insensitive to the inhibitory activity of cantharidin. To explore the molecular basis for this selectivity, we synthesized and tested novel C5/C6-derivatives designed from quantum-based modeling of the interactions revealed in the co-crystal structures of PP5C in complex with cantharidin. Structure-activity relationship studies and analysis of high-resolution (1.25Å) PP5C-inhibitor co-crystal structures reveal close contacts between the inhibitor bridgehead oxygen and both a catalytic metal ion and a non-catalytic phenylalanine residue, the latter of which is substituted by tryptophan in PP4C. Quantum chemistry calculations predicted that steric clashes with the bulkier tryptophan side chain in PP4C would force all cantharidin-based inhibitors into an unfavorable binding mode, disrupting the strong coordination of active site metal ions observed in the PP5C co-crystal structures, thereby rendering PP4C insensitive to the inhibitors. This prediction was confirmed by inhibition studies employing native human PP4C. Mutation of PP5C (F446W) and PP1C (F257W), to mimic the PP4C active site, resulted in markedly suppressed sensitivity to cantharidin. These observations provide insight into the structural basis for the natural selectivity of cantharidin and provide an avenue for PP4C deselection. The novel crystal structures also provide insight into interactions that provide increased selectivity of the C5/C6 modifications for PP5C versus other PPP-family phosphatases.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cantharidin/chemistry , Enzyme Inhibitors/chemistry , Nuclear Proteins/chemistry , Phosphoprotein Phosphatases/chemistry , Protein Phosphatase 1/chemistry , Amino Acid Sequence , Binding Sites , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Kinetics , Molecular Docking Simulation , Mutagenesis, Site-Directed , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Protein Binding , Protein Domains , Protein Phosphatase 1/antagonists & inhibitors , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Structure-Activity Relationship
7.
Mol Cancer Res ; 11(8): 845-55, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23671329

ABSTRACT

UNLABELLED: Fostriecin is a natural product purified from Sterptomyces extracts with antitumor activity sufficient to warrant human clinical trials. Unfortunately, difficulties associated with supply and stable drug formulation stalled further development. At a molecular level, fostriecin is known to act as a catalytic inhibitor of four PPP-family phosphatases, and reports describing the design of molecules in this class suggest derivatives targeting enzymes within the fostriecin-sensitive subfamily can be successful. However, it is not clear if the tumor-selective cytotoxicity of fostriecin results from the inhibition of a specific phosphatase, multiple phosphatases, or a limited subset of fostriecin sensitive phosphatases. How the inhibition of sensitive phosphatases contributes to tumor-selective cytotoxicity is also not clear. Here, high-content time-lapse imaging of live cells revealed novel insight into the cellular actions of fostriecin, showing that fostriecin-induced apoptosis is not simply induced following a sustained mitotic arrest. Rather, apoptosis occurred in an apparent second interphase produced when tetraploid cells undergo mitotic slippage. Comparison of the actions of fostriecin and antisense-oligonucleotides specifically targeting human fostriecin-sensitive phosphatases revealed that the suppression PP4C alone is sufficient to mimic many actions of fostriecin. Importantly, targeted suppression of PP4C induced apoptosis, with death occurring in tetraploid cells following mitotic slippage. This effect was not observed following the suppression of PP1C, PP2AC, or PP5C. These data clarify PP4C as a fostriecin-sensitive phosphatase and demonstrate that the suppression of PP4C triggers mitotic slippage/apoptosis. IMPLICATIONS: Future development of fostriecin class inhibitors should consider PP4C as a potentially important target. Mol Cancer Res; 11(8); 845-55. ©2013 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Mitosis/drug effects , Phosphoprotein Phosphatases/antagonists & inhibitors , Polyenes/pharmacology , Pyrones/pharmacology , Dose-Response Relationship, Drug , HeLa Cells , Humans , Molecular Mimicry , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Protein Phosphatase 1/antagonists & inhibitors , Protein Phosphatase 1/metabolism , Protein Phosphatase 2/antagonists & inhibitors , Protein Phosphatase 2/metabolism , Tetraploidy
8.
Arterioscler Thromb Vasc Biol ; 33(6): 1339-49, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23599440

ABSTRACT

OBJECTIVE: We have previously shown that transient coronary artery occlusion stimulated coronary collateral growth (CCG) in healthy (Sprague Dawley) but not in metabolic syndrome (JCR:LA-cp [JCR] ) rats. Here, we sought to determine whether matrix metalloproteinases (MMPs) negatively regulate CCG in the metabolic syndrome via release of endostatin and angiostatin. APPROACH AND RESULTS: Rats underwent transient, repetitive left anterior descending occlusion and resultant myocardial ischemia (RI) for 0 to 10 days. CCG was measured in the collateral-dependent and normal zones using microspheres, MMP activation by Western blot, and endostatin and angiostatin by ELISA on days 0, 3, 6, 9, or 10 of RI. Endostatin and angiostatin were increased in JCR but not in Sprague Dawley rats on days 6 and 9 of RI. Increased endostatin and angiostatin correlated with increased MMP12 (≈ 4-fold) activation in JCR but not in Sprague Dawley rats on days 6 and 9 of RI. Inhibition of MMP12 in JCR rats nearly completely blocked endostatin (≈ 85%) and angiostatin (≈ 90%) generation and significantly improved CCG (collateral-dependent zone flow was ≈ 66% of normal zone flow versus ≈ 12% for JCR RI). CONCLUSIONS: Compromised CCG in the metabolic syndrome is, in large part, because of increased MMP12 activation and consequent increased generation of endostatin and angiostatin, which inhibits late-stage collateral remodeling.


Subject(s)
Angiostatins/metabolism , Collateral Circulation/physiology , Coronary Occlusion/metabolism , Endostatins/metabolism , Matrix Metalloproteinase 12/metabolism , Metabolic Syndrome/metabolism , Angiostatins/analysis , Animals , Blotting, Western , Coronary Circulation/physiology , Coronary Occlusion/physiopathology , Disease Models, Animal , Endostatins/analysis , Enzyme-Linked Immunosorbent Assay , Metabolic Syndrome/physiopathology , Random Allocation , Rats , Rats, Sprague-Dawley , Reference Values
9.
Arterioscler Thromb Vasc Biol ; 33(4): 727-36, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23393394

ABSTRACT

OBJECTIVE: Transient, repetitive occlusion stimulates coronary collateral growth (CCG) in normal animals. Vascular smooth muscle cells (VSMCs) switch to synthetic phenotype early in CCG, then return to contractile phenotype. CCG is impaired in the metabolic syndrome. We determined whether impaired CCG was attributable to aberrant VSMC phenotypic modulation by miR-145-mediated mechanisms, and whether restoration of physiological miR-145 levels in metabolic syndrome (JCR rat) improved CCG. APPROACH AND RESULTS: CCG was stimulated by transient, repetitive left anterior descending artery occlusion and evaluated after 9 days by coronary blood flow measurements (microspheres). miR-145 was delivered to JCR VSMCs via adenoviral vector (miR-145-Adv). In JCR rats, miR-145 was decreased late in CCG (≈ 2-fold day 6; ≈ 4-fold day 9 versus SD), which correlated with decreased expression of smooth muscle-specific contractile proteins (≈ 5-fold day 6; ≈ 10-fold day 9 versus SD), indicative of VSMCs' failure to return to the contractile phenotype late in CCG. miR-145 expression in JCR rats (miR-145-Adv) on days 6 to 9 of CCG completely restored VSMCs contractile phenotype and CCG (collateral/normal zone flow ratio was 0.93 ± 0.09 JCR+miR-145-Adv versus 0.12 ± 0.02 JCR versus 0.87 ± 0.02 SD). CONCLUSIONS: Restoration of VSMC contractile phenotype through miR-145 delivery is a highly promising intervention for restoration of CCG in the metabolic syndrome.


Subject(s)
Collateral Circulation , Coronary Circulation , Genetic Therapy , Metabolic Syndrome/therapy , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Vasoconstriction , Adenoviridae/genetics , Animals , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Disease Models, Animal , Gene Transfer Techniques , Genetic Vectors , Male , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Metabolic Syndrome/physiopathology , Muscle Proteins/biosynthesis , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/pathology , Phenotype , Rats , Rats, Inbred SHR , Rats, Sprague-Dawley , Rats, Zucker , Time Factors
10.
Cell Microbiol ; 14(6): 882-901, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22309152

ABSTRACT

Argonaute (Ago) plays a central role in RNA interference in metazoans, but its status in lower organisms remains ill-defined. We report on the Ago complex of the unicellular protozoan, Toxoplasma gondii (Tg), an obligatory pathogen of mammalian hosts. The PIWI-like domain of TgAgo lacked the canonical DDE/H catalytic triad, explaining its weak target RNA cleavage activity. However, TgAgo associated with a stronger RNA slicer, a Tudor staphylococcal nuclease (TSN), and with a protein Arg methyl transferase, PRMT1. Mutational analysis suggested that the N-terminal RGG-repeat domain of TgAgo was methylated by PRMT1, correlating with the recruitment of TSN. The slicer activity of TgAgo was Mg(2+)-dependent and required perfect complementarity between the guide RNA and the target. In contrast, the TSN activity was Ca(2+) -dependent and required an imperfectly paired guide RNA. Ago knockout parasites showed essentially normal growth, but in contrast, the PRMT1 knockouts grew abnormally. Chemical inhibition of Arg-methylation also had an anti-parasitic effect. These results suggest that the parasitic PRMT1 plays multiple roles, and its loss affects the recruitment of a more potent second slicer to the parasitic RNA silencing complex, the exact mechanism of which remains to be determined.


Subject(s)
Argonaute Proteins/metabolism , Endoribonucleases/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Protozoan Proteins/metabolism , RNA Cleavage , Toxoplasma/metabolism , Amino Acid Sequence , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Base Pairing , Base Sequence , Cell Division , Cells, Cultured , Endoribonucleases/chemistry , Endoribonucleases/genetics , Gene Knockout Techniques , Humans , Methylation , Molecular Sequence Data , Protein Binding , Protein Processing, Post-Translational , Protein Structure, Tertiary , Protein Subunits/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , RNA/chemistry , RNA Interference , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion , Sequence Homology, Amino Acid , Toxoplasma/genetics , Toxoplasma/growth & development
11.
Int Arch Allergy Immunol ; 157(3): 259-68, 2012.
Article in English | MEDLINE | ID: mdl-22042170

ABSTRACT

BACKGROUND: Allergic conjunctivitis is characterized by itchy, watery and swollen eyes which occur in response to exposure to seasonal or environmental allergens. The early phase reaction of allergic conjunctivitis is primarily mediated by mast cell degranulation while the late phase reaction is driven by Th2 cells and eosinophils. Prostaglandin D(2) (PGD(2)), released from mast cells, is present in allergic conjunctival tears and may elicit classical allergic responses via interaction with the high-affinity DP2 receptor (chemoattractant receptor-homologous molecule expressed on Th2 cells, CRTh2). Furthermore, antagonism of this receptor is well known to inhibit eosinophil chemotaxis, basophil activation and Th2 cytokine production. PGD(2), therefore, may be involved in both early and late phase reactions in response to allergen challenge. METHODS: Thus, we explored whether our novel and selective DP2 antagonist AM156 would be efficacious in animal models of allergic conjunctivitis. Furthermore, as respiratory syncytial virus (RSV) has been implicated in the pathogenesis of allergic conjunctivitis, we examined the effects of DP2 antagonism in a murine model of RSV ocular infection. RESULTS: Utilizing a guinea pig ovalbumin model and a murine ragweed model we demonstrated that AM156 reduces redness, discharge and swelling in response to allergen challenge. These effects were equal to or greater than those of current clinical treatment options for allergic conjunctivitis including topical corticosteroids and a dual-mechanism antihistamine and decongestant. AM156 significantly reduced RSV-induced ocular inflammation and IL-4 production. CONCLUSION: These results suggest that a topical DP2 antagonist such as AM156 may represent a novel therapeutic for allergic conjunctivitis.


Subject(s)
Anti-Allergic Agents/therapeutic use , Benzylamines/therapeutic use , Conjunctivitis, Allergic/drug therapy , Conjunctivitis, Viral/drug therapy , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Respiratory Syncytial Virus Infections/drug therapy , Administration, Topical , Allergens/immunology , Ambrosia/immunology , Animals , Conjunctivitis, Allergic/immunology , Conjunctivitis, Allergic/metabolism , Conjunctivitis, Viral/immunology , Conjunctivitis, Viral/metabolism , Disease Models, Animal , Female , Guinea Pigs , Interleukin-4/immunology , Interleukin-4/metabolism , Male , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Receptors, Immunologic/immunology , Receptors, Prostaglandin/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/metabolism
12.
J Virol ; 85(19): 10090-100, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21795342

ABSTRACT

Human respiratory syncytial virus (RSV), a major cause of severe respiratory diseases, efficiently suppresses cellular innate immunity, represented by type I interferon (IFN), using its two unique nonstructural proteins, NS1 and NS2. In a search for their mechanism, NS1 was previously shown to decrease levels of TRAF3 and IKKε, whereas NS2 interacted with RIG-I and decreased TRAF3 and STAT2. Here, we report on the interaction, cellular localization, and functional domains of these two proteins. We show that recombinant NS1 and NS2, expressed in lung epithelial A549 cells, can form homo- as well as heteromers. Interestingly, when expressed alone, substantial amounts of NS1 and NS2 localized to the nuclei and to the mitochondria, respectively. However, when coexpressed with NS2, as in RSV infection, NS1 could be detected in the mitochondria as well, suggesting that the NS1-NS2 heteromer localizes to the mitochondria. The C-terminal tetrapeptide sequence, DLNP, common to both NS1 and NS2, was required for some functions, but not all, whereas only the NS1 N-terminal region was important for IKKε reduction. Finally, NS1 and NS2 both interacted specifically with host microtubule-associated protein 1B (MAP1B). The contribution of MAP1B in NS1 function was not tested, but in NS2 it was essential for STAT2 destruction, suggesting a role of the novel DLNP motif in protein-protein interaction and IFN suppression.


Subject(s)
Interferons/antagonists & inhibitors , Protein Interaction Mapping , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication , Cell Line , Cell Nucleus/chemistry , Epithelial Cells/virology , Humans , I-kappa B Kinase/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/chemistry , Protein Multimerization , Protein Structure, Tertiary
13.
Clin Vaccine Immunol ; 16(11): 1654-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19759251

ABSTRACT

Respiratory syncytial virus (RSV) is an important cause of viral respiratory disease in children, and RSV bronchiolitis has been associated with the development of asthma in childhood. RSV spreads from the eye and nose to the human respiratory tract. Correlative studies of humans and direct infection studies of BALB/c mice have established the eye as a significant pathway of entry of RSV to the lung. At the same time, RSV infection of the eye produces symptoms resembling allergic conjunctivitis. Cysteinyl leukotrienes (CysLTs) are known promoters of allergy and inflammation, and the first step in their biogenesis from arachidonic acid is catalyzed by 5-lipoxygenase (5-LO) in concert with the 5-LO-activating protein (FLAP). We have recently developed a novel compound, AM679, which is a topically applied and potent inhibitor of FLAP. Here we show with the BALB/c mouse eye RSV infection model that AM679 markedly reduced the RSV-driven ocular pathology as well as the synthesis of CysLTs in the eye. In addition, AM679 decreased the production of the Th2 cell cytokine interleukin-4 but did not increase the viral load in the eye or the lung. These results suggest that FLAP inhibitors may be therapeutic for RSV-driven eye disease and possibly other inflammatory eye indications.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Eye Diseases/drug therapy , Immunologic Factors/therapeutic use , Inflammation/pathology , Inflammation/prevention & control , Membrane Proteins/antagonists & inhibitors , Respiratory Syncytial Virus Infections/drug therapy , 5-Lipoxygenase-Activating Proteins , Animals , Eye/virology , Eye Diseases/immunology , Eye Diseases/pathology , Female , Interleukin-4/biosynthesis , Lung/virology , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Viruses/immunology , Viral Load
14.
J Virol ; 83(21): 10869-76, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19710142

ABSTRACT

As obligatory parasites, viruses co-opt a variety of cellular functions for robust replication. The expression of the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV), a significant pediatric pathogen, absolutely requires actin and is stimulated by the actin-regulatory protein profilin. As actin is a major contractile protein, it was important to determine whether the known functional domains of actin and profilin were important for their ability to activate RSV transcription. Analyses of recombinant mutants in a reconstituted RSV transcription system suggested that the divalent-cation-binding domain of actin is critically needed for binding to the RSV genome template and for the activation of viral RNA synthesis. In contrast, the nucleotide-binding domain and the N-terminal acidic domain were needed neither for template binding nor for transcription. Specific surface residues of actin, required for actin-actin contact during filamentation, were also nonessential for viral transcription. Unlike actin, profilin did not directly bind to the viral template but was recruited by actin. Mutation of the interactive residues of actin or profilin, resulting in the loss of actin-profilin binding, also abolished profilin's ability to stimulate viral transcription. Together, these results suggest that actin acts as a classical transcription factor for the virus by divalent-cation-dependent binding to the viral template and that profilin acts as a transcriptional cofactor, in part by associating with actin. This essential viral role of actin is independent of its contractile cellular role.


Subject(s)
Actins , DNA Mutational Analysis , Gene Expression Regulation, Viral , Profilins , RNA, Viral/metabolism , Respiratory Syncytial Virus, Human , Actins/chemistry , Actins/genetics , Actins/metabolism , Animals , Cations, Divalent/metabolism , Chickens , Models, Molecular , Mutation , Profilins/chemistry , Profilins/genetics , Profilins/metabolism , Protein Structure, Tertiary , RNA, Viral/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
15.
J Virol ; 83(19): 9682-93, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19625398

ABSTRACT

Viruses of the Paramyxoviridae family, such as the respiratory syncytial virus (RSV), suppress cellular innate immunity represented by type I interferon (IFN) for optimal growth in their hosts. The two unique nonstructural (NS) proteins, NS1 and NS2, of RSV suppress IFN synthesis, as well as IFN function, but their exact targets are still uncharacterized. Here, we investigate if either or both of the NS proteins affect the steady-state levels of key members of the IFN pathway. We found that both NS1 and NS2 decreased the levels of TRAF3, a strategic integrator of multiple IFN-inducing signals, although NS1 was more efficient. Only NS1 reduced IKKepsilon, a key protein kinase that specifically phosphorylates and activates IFN regulatory factor 3. Loss of the TRAF3 and IKKepsilon proteins appeared to involve a nonproteasomal mechanism. Interestingly, NS2 modestly increased IKKepsilon levels. In the IFN response pathway, NS2 decreased the levels of STAT2, the essential transcription factor for IFN-inducible antiviral genes. Preliminary mapping revealed that the C-terminal 10 residues of NS1 were essential for reducing IKKepsilon levels and the C-terminal 10 residues of NS2 were essential for increasing and reducing IKKepsilon and STAT2, respectively. In contrast, deletion of up to 20 residues of the C termini of NS1 and NS2 did not diminish their TRAF3-reducing activity. Coimmunoprecipitation studies revealed that NS1 and NS2 form a heterodimer. Clearly, the NS proteins of RSV, working individually and together, regulate key signaling molecules of both the IFN activation and response pathways.


Subject(s)
Gene Expression Regulation, Viral , Interferons/metabolism , Respiratory Syncytial Viruses/metabolism , Viral Nonstructural Proteins/physiology , Amino Acid Sequence , Animals , Chlorocebus aethiops , Dimerization , Humans , I-kappa B Kinase/metabolism , Molecular Sequence Data , Sequence Homology, Amino Acid , Signal Transduction , TNF Receptor-Associated Factor 3/metabolism , Vero Cells , Viral Nonstructural Proteins/chemistry
16.
Mol Cell Biol ; 29(2): 458-70, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19001086

ABSTRACT

We previously showed that ribosomal protein L13a is required for translational silencing of gamma interferon (IFN-gamma)-induced ceruloplasmin (Cp) synthesis in monocytes. This silencing also requires the presence of the GAIT (IFN-gamma activated inhibitor of translation) element in the 3' untranslated region (UTR) of Cp mRNA. Considering that Cp is an inflammatory protein, we hypothesized that this mechanism may have evolved to silence a family of proinflammatory proteins, of which Cp is just one member. To identify the other mRNAs that are targets for this silencing, we performed a genome-wide analysis of the polysome-profiled mRNAs by using an Affymetrix GeneChip and an inflammation-responsive gene array. A cluster of mRNAs encoding different chemokines and their receptors was identified as common hits in the two approaches and validated by real-time PCR. In silico predicted GAIT hairpins in the 3' UTRs of the target mRNAs were confirmed as functional cis-acting elements for translational silencing by luciferase reporter assays. Consistent with Cp, the newly identified target mRNAs also required L13a for silencing. Our studies have identified a new inflammation-responsive posttranscriptional operon that can be regulated directly at the level of translation in IFN-gamma-activated monocytes. This regulation of a cohort of mRNAs encoding inflammatory proteins may be important to resolve inflammation.


Subject(s)
Inflammation/genetics , Interferon-gamma/metabolism , Monocytes/immunology , Monocytes/metabolism , Operon , Polyribosomes/genetics , 3' Untranslated Regions , Ceruloplasmin/metabolism , Chemokines/genetics , Chemokines/metabolism , Computer Simulation , Electrophoretic Mobility Shift Assay , Gene Silencing , Humans , Inflammation/metabolism , Oligonucleotide Array Sequence Analysis , Polyribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Ribosomal Proteins/metabolism , U937 Cells
17.
J Virol ; 82(16): 7977-87, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18550659

ABSTRACT

The La antigen (SS-B) associates with a wide variety of cellular and viral RNAs to affect gene expression in multiple systems. We show that La is the major cellular protein found to be associated with the abundant 44-nucleotide viral leader RNA (leRNA) early after infection with respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus. Consistent with this, La redistributes from the nucleus to the cytoplasm in RSV-infected cells. Upon RNA interference knockdown of La, leRNA is redirected to associate with the RNA-binding protein RIG-I, a known activator of interferon (IFN) gene expression, and this is accompanied by the early induction of IFN mRNA. These results suggest that La shields leRNA from RIG-I, abrogating the early viral activation of type I IFN. We mapped the leRNA binding function to RNA recognition motif 1 of La and showed that while wild-type La greatly enhanced RSV growth, a La mutant defective in RSV leRNA binding also did not support RSV growth. Comparative studies of RSV and Sendai virus and the use of IFN-negative Vero cells indicated that La supports the growth of nonsegmented negative-strand RNA viruses by both IFN suppression and a potentially novel IFN-independent mechanism.


Subject(s)
Autoantigens/physiology , DEAD-box RNA Helicases/chemistry , RNA, Viral , Ribonucleoproteins/physiology , Amino Acid Motifs , Animals , Autoantigens/chemistry , Cell Line, Tumor , Cell Nucleus/metabolism , Chlorocebus aethiops , Cloning, Molecular , Cytoplasm/metabolism , DEAD Box Protein 58 , Humans , Models, Genetic , RNA Interference , Receptors, Immunologic , Ribonucleoproteins/chemistry , Vero Cells , Virus Replication , SS-B Antigen
18.
J Mol Med (Berl) ; 86(3): 313-22, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18193184

ABSTRACT

MicroRNAs (miRNAs) are endogenous noncoding RNAs that down-regulate gene expression by promoting cleavage or translational arrest of target mRNAs. While most miRNAs are transcribed from their own dedicated genes, some map to introns of 'host' transcripts, the biological significance of which remains unknown. Here, we show that prostate cells are naturally devoid of EGF-like domain 7 (Egfl7) transcripts and hence also deficient in a miRNA, miR-126*, generated from splicing and processing of its ninth intron. Use of recombinant and synthetic miRNAs or a specific antagomir established a role of miR-126* in silencing prostein in non-endothelial cells. We mapped two miR-126*-binding sites in the 3'UTR of the prostein mRNA required for translational repression. Transfection of synthetic miR-126* into prostate cancer LNCaP cells strongly reduced the translation of prostein. Interestingly, loss of prostein correlated with reduction of LNCaP cell migration and invasion. Thus, the robust expression of prostein protein in the prostate cells results from a combination of transcriptional activation of the prostein gene and absence of intronic miRNA-126* due to the prostate-specific repression of the Egfl7 gene. We conclude that intronic miRNAs from tissue-specific transcripts, or their natural absence, make cardinal contributions to cellular gene expression and phenotype. These findings also open the door to tissue-specific miRNA therapy.


Subject(s)
Endothelium, Vascular/metabolism , Introns/genetics , Membrane Proteins/genetics , MicroRNAs/genetics , Neoplasm Proteins/genetics , Prostatic Neoplasms/pathology , Protein Biosynthesis , 3' Untranslated Regions , Base Sequence , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Male , Membrane Proteins/metabolism , Models, Genetic , Molecular Sequence Data , Neoplasm Invasiveness , Organ Specificity , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering
19.
J Mol Med (Berl) ; 85(7): 745-52, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17351763

ABSTRACT

Stable RNA interference (RNAi) is commonly achieved by recombinant expression of short hairpin RNA (shRNA). To generate virus-resistant cell lines, we cloned a shRNA cassette against the phosphoprotein gene of respiratory syncytial virus (RSV) into a polIII-driven plasmid vector. Analysis of individual stable transfectants showed a spectrum of RSV resistance correlating with the levels of shRNA expressed from different chromosomal locations. Interestingly, resistance in a minority of clones was due to mono-allelic disruption of the cellular gene for vasodilator-stimulated phosphoprotein (VASP). Thus, pure clones of chromosomally integrated DNA-directed RNAi can exhibit gene disruption phenotypes resembling but unrelated to RNAi.


Subject(s)
Cell Adhesion Molecules/physiology , Immunity , Microfilament Proteins/physiology , Oligodeoxyribonucleotides/genetics , Phosphoproteins/physiology , RNA Interference , RNA, Small Interfering/physiology , Respiratory Syncytial Viruses/immunology , Base Sequence , Cell Adhesion Molecules/genetics , Chromosomes, Human , Cloning, Molecular/methods , Genetic Vectors , HeLa Cells , Humans , Microfilament Proteins/genetics , Oligodeoxyribonucleotides/chemical synthesis , Oligodeoxyribonucleotides/pharmacology , Phosphoproteins/genetics , Respiratory Syncytial Viruses/growth & development , Transfection
20.
J Virol ; 81(2): 783-90, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17050596

ABSTRACT

Respiratory syncytial virus (RSV) is the foremost respiratory pathogen in newborns and claims millions of lives annually. However, there has been no methodical study of the pathway(s) of entry of RSV or its interaction with nonrespiratory tissues. We and others have recently established a significant association between allergic conjunctivitis and the presence of RSV in the eye. Here we adopt a BALB/c mouse model and demonstrate that when instilled in the live murine eye, RSV not only replicated robustly in the eye but also migrated to the lung and produced a respiratory disease that is indistinguishable from the standard, nasally acquired RSV disease. Ocularly applied synthetic anti-RSV small interfering RNA prevented infection of the eye as well as the lung. RSV infection of the eye activated a plethora of ocular cytokines and chemokines with profound relevance to inflammation of the eye. Anticytokine treatments in the eye reduced ocular inflammation but had no effect on viral growth in both eye and lung, demonstrating a role of the cytokine response in ocular pathology. These results establish the eye as a major gateway of respiratory infection and a respiratory virus as a bona fide eye pathogen, thus offering novel intervention and treatment options.


Subject(s)
Conjunctivitis, Viral/transmission , Conjunctivitis, Viral/virology , Eye/virology , Lung/virology , Respiratory Syncytial Virus Infections/transmission , Respiratory Syncytial Virus, Human/pathogenicity , Respiratory Tract Infections/virology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Conjunctivitis, Viral/therapy , Disease Models, Animal , Eye/immunology , Female , Humans , Interleukin-1alpha/immunology , Lung/immunology , Mice , Mice, Inbred BALB C , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Respiratory Syncytial Virus Infections/therapy , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/metabolism , Respiratory Syncytial Virus, Human/physiology , Respiratory Tract Infections/therapy , Treatment Outcome , Tumor Necrosis Factor-alpha/immunology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...