Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Physiol Neurobiol ; 307: 103964, 2023 01.
Article in English | MEDLINE | ID: mdl-36174962

ABSTRACT

Effective cough requires a significant increase in lung volume used to produce the shear forces on the airway to clear aspirated material. This increase in tidal volume during cough, along with an increase in tidal frequency during bouts of paroxysmal cough produces profound hyperventilation and thus reduces arterial CO2. While there are several reports in the literature regarding the effects of hypercapnia, hyperoxia, and hypoxia on cough, there is little research quantifying the effects of hypocapnia on the cough reflex. We hypothesized that decreased CO2 would enhance coughing. In 12 spontaneously breathing adult male cats, we compared bouts of prolonged mechanically stimulated cough, in which cough induced hyperventilation (CHV) was allowed to occur, with isocapnic cough trials where we maintained eupneic end-tidal CO2 by adding CO2 to the inspired gas. Isocapnia slightly increased cough number and decreased esophageal pressures with no change in EMG magnitudes or phase durations. The cough-to-eupnea transition was also analyzed between CHV, isocapnia, and a third group of animals that were mechanically hyperventilated to apnea. The transition to eupnea was highly sensitive to added CO2, and CHV apneas were much shorter than those produced by mechanical hyperventilation. We suggest that the cough pattern generator is relatively insensitive to CHV. In the immediate post-cough period, the appearance of breathing while CO2 is very low suggests a transient reduction in apneic threshold following a paroxysmal cough bout.


Subject(s)
Carbon Dioxide , Hyperventilation , Animals , Male , Cough , Hypocapnia , Respiration , Apnea
2.
J Neurophysiol ; 128(2): 405-417, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35830612

ABSTRACT

Laryngeal function is vital to airway protection. Although swallow is mediated by the brainstem, the mechanism underlying the increased risk of dysphagia after cervical spinal cord injury (SCI) is unknown. We hypothesized that: 1) loss of descending phrenic drive affects swallow and breathing differently, and 2) loss of ascending spinal afferent information alters swallow regulation. We recorded electromyograms (EMGs) from upper airway and chest wall muscles in freely breathing pentobarbital-anesthetized cats and rats. Laryngeal abductor activity during inspiration increased about twofold following C2 lateral hemisection. Ipsilateral to the injury, the crural diaphragm EMG amplitude was reduced during breathing (62 ± 25% change postinjury), but no animal had complete termination of activity; 75% of animals had increased contralateral diaphragm recruitment, but this did not reach significance. During swallow, laryngeal adductor and pharyngeal constrictor muscles increased activity, and diaphragm activity was bilaterally suppressed. This was unexpected because of the ipsilateral-specific response during breathing. Swallow-breathing coordination was disrupted by injury, and more swallows occurred during early expiration. Finally, to determine if the chest wall is a major source of feedback for laryngeal regulation, we performed T1 total transections in rats. As in the C2 lateral hemisection, inspiratory laryngeal recruitment was the first feature noted after injury. In contrast to the C2 lateral hemisection, diaphragmatic drive increased after T1 transection. Overall, we found that SCI alters laryngeal drive during swallow and breathing, and alters swallow-related diaphragm activity. Our results show behavior-specific effects, suggesting that swallow is affected more than breathing is by SCI, and emphasizing the need for additional studies on the effect of ascending afferents from the spinal cord on laryngeal function.NEW & NOTEWORTHY This is the first manuscript to determine the impact of cSCI on laryngeal and swallow function, and to describe a possible mechanism for dysphagia and altered airway protection after injury.


Subject(s)
Cervical Cord , Deglutition Disorders , Spinal Cord Injuries , Animals , Deglutition Disorders/etiology , Diaphragm/physiology , Phrenic Nerve , Rats , Rats, Sprague-Dawley , Spinal Cord/physiology , Spinal Cord Injuries/complications
3.
Respir Physiol Neurobiol ; 296: 103805, 2022 02.
Article in English | MEDLINE | ID: mdl-34678475

ABSTRACT

Recurrent laryngeal afferent fibers are primarily responsible for cough in response to mechanical or chemical stimulation of the upper trachea and larynx in the guinea pig. Lower airway slowly adapting receptors have been proposed to have a permissive effect on the cough reflex. We hypothesized that vagotomy below the recurrent laryngeal nerve branch would depress mechanically or chemically induced cough. In anesthetized, bilaterally thoracotomized, artificially ventilated cats, thoracic vagotomy nearly eliminated cough induced by mechanical stimulation of the intrathoracic airway, significantly depressed mechanically stimulated laryngeal cough, and eliminated capsaicin-induced cough. These results support an important role of lower airway sensory feedback in the production of tracheobronchial and laryngeal cough in the cat. Further, at least some of this feedback is due to excitation from pulmonary volume-sensitive sensory receptors.


Subject(s)
Cough/physiopathology , Laryngeal Nerves/physiology , Pulmonary Stretch Receptors/physiology , Reflex/physiology , Respiratory System/innervation , Vagotomy , Anesthesia , Animals , Cats , Disease Models, Animal , Female , Male
4.
J Neurophysiol ; 127(1): 267-278, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34879205

ABSTRACT

Brainstem respiratory neuronal network significantly contributes to cough motor pattern generation. Neuronal populations in the pre-Bötzinger complex (PreBötC) represent a substantial component for respiratory rhythmogenesis. We studied the role of PreBötC neuronal excitation and inhibition on mechanically induced tracheobronchial cough in 15 spontaneously breathing, pentobarbital anesthetized adult cats (35 mg/kg, iv initially). Neuronal excitation by unilateral microinjection of glutamate analog d,l-homocysteic acid resulted in mild reduction of cough abdominal electromyogram (EMG) amplitudes and very limited temporal changes of cough compared with effects on breathing (very high respiratory rate, high amplitude inspiratory bursts with a short inspiratory phase, and tonic inspiratory motor component). Mean arterial blood pressure temporarily decreased. Blocking glutamate-related neuronal excitation by bilateral microinjections of nonspecific glutamate receptor antagonist kynurenic acid reduced cough inspiratory and expiratory EMG amplitude and shortened most cough temporal characteristics similarly to breathing temporal characteristics. Respiratory rate decreased and blood pressure temporarily increased. Limiting active neuronal inhibition by unilateral and bilateral microinjections of GABAA receptor antagonist gabazine resulted in lower cough number, reduced expiratory cough efforts, and prolongation of cough temporal features and breathing phases (with lower respiratory rate). The PreBötC is important for cough motor pattern generation. Excitatory glutamatergic neurotransmission in the PreBötC is involved in control of cough intensity and patterning. GABAA receptor-related inhibition in the PreBötC strongly affects breathing and coughing phase durations in the same manner, as well as cough expiratory efforts. In conclusion, differences in effects on cough and breathing are consistent with separate control of these behaviors.NEW & NOTEWORTHY This study is the first to explore the role of the inspiratory rhythm and pattern generator, the pre-Bötzinger complex (PreBötC), in cough motor pattern formation. In the PreBötC, excitatory glutamatergic neurotransmission affects cough intensity and patterning but not rhythm, and GABAA receptor-related inhibition affects coughing and breathing phase durations similarly to each other. Our data show that the PreBötC is important for cough motor pattern generation, but cough rhythmogenesis appears to be controlled elsewhere.


Subject(s)
Central Pattern Generators , Cough , Excitatory Amino Acid Antagonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , Glutamic Acid/pharmacology , Inhalation , Medulla Oblongata , Reflex , Respiratory Rate , Abdominal Muscles/drug effects , Abdominal Muscles/physiopathology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cats , Central Pattern Generators/drug effects , Central Pattern Generators/metabolism , Central Pattern Generators/physiopathology , Cough/drug therapy , Cough/metabolism , Cough/physiopathology , Electromyography , Excitatory Amino Acid Antagonists/administration & dosage , Female , GABA-A Receptor Antagonists/administration & dosage , Glutamic Acid/administration & dosage , Glutamic Acid/analysis , Homocysteine/analogs & derivatives , Homocysteine/pharmacology , Inhalation/drug effects , Inhalation/physiology , Kynurenic Acid/pharmacology , Male , Medulla Oblongata/drug effects , Medulla Oblongata/metabolism , Medulla Oblongata/physiopathology , Pyridazines/pharmacology , Reflex/drug effects , Reflex/physiology , Respiratory Rate/drug effects , Respiratory Rate/physiology
5.
PLoS One ; 16(6): e0253060, 2021.
Article in English | MEDLINE | ID: mdl-34153070

ABSTRACT

The role of the cerebellum in controlling the cough motor pattern is not well understood. We hypothesized that cerebellectomy would disinhibit motor drive to respiratory muscles during cough. Cough was induced by mechanical stimulation of the tracheobronchial airways in anesthetized, spontaneously breathing adult cats (8 male, 1 female), and electromyograms (EMGs) were recorded from upper airway, chest wall, and abdominal respiratory muscles. Cough trials were performed before and at two time points after total cerebellectomy (10 minutes and >1 hour). Unlike a prior report in paralyzed, decerebrated, and artificially ventilated animals, we observed that cerebellectomy had no effect on cough frequency. After cerebellectomy, thoracic inspiratory muscle EMG magnitudes increased during cough (diaphragm EMG increased by 14% at 10 minutes, p = 0.04; parasternal by 34% at 10 minutes and by 32% at >1 hour, p = 0.001 and 0.03 respectively). During cough at 10 minutes after cerebellectomy, inspiratory esophageal pressure was increased by 44% (p = 0.004), thyroarytenoid (laryngeal adductor) muscle EMG amplitude increased 13% (p = 0.04), and no change was observed in the posterior cricoarytenoid (laryngeal abductor) EMG. Cough phase durations did not change. Blood pressure and heart rate were reduced after cerebellectomy, and respiratory rate also decreased due to an increase in duration of the expiratory phase of breathing. Changes in cough-related EMG magnitudes of respiratory muscles suggest that the cerebellum exerts inhibitory control of cough motor drive, but not cough number or phase timing in response to mechanical stimuli in this model early after cerebellectomy. However, results varied widely at >1 hour after cerebellectomy, with some animals exhibiting enhancement or suppression of one or more components of the cough motor behavior. These results suggest that, while the cerebellum and behavior-related sensory feedback regulate cough, it may be difficult to predict the nature of the modulation based on total cerebellectomy.


Subject(s)
Blood Pressure , Cerebellum/surgery , Cough/physiopathology , Heart Rate , Respiration , Respiratory Muscles/physiopathology , Animals , Cats , Female , Male
6.
Front Hum Neurosci ; 14: 112, 2020.
Article in English | MEDLINE | ID: mdl-32327986

ABSTRACT

Afferent feedback can appreciably alter the pharyngeal phase of swallow. In order to measure the stability of the swallow motor pattern during several types of alterations in afferent feedback, we assessed swallow during a conventional water challenge in four anesthetized cats, and compared that to swallows induced by fixed (20 Hz) and stochastic (1-20Hz) electrical stimulation applied to the superior laryngeal nerve. The swallow motor patterns were evaluated by electromyographic activity (EMG) of eight muscles, based on their functional significance: laryngeal elevators (mylohyoid, geniohyoid, and thyrohyoid); laryngeal adductor (thyroarytenoid); inferior pharyngeal constrictor (thyropharyngeus); upper esophageal sphincter (cricopharyngeus); and inspiratory activity (parasternal and costal diaphragm). Both the fixed and stochastic electrical stimulation paradigms increased activity of the laryngeal elevators, produced short-term facilitation evidenced by increasing swallow durations over the stimulus period, and conversely inhibited swallow-related diaphragm activity. Both the fixed and stochastic stimulus conditions also increased specific EMG amplitudes, which never occurred with the water challenges. Stochastic stimulation increased swallow excitability, as measured by an increase in the number of swallows produced. Consistent with our previous results, changes in the swallow motor pattern for pairs of muscles were only sometimes correlated with each other. We conclude that alterations in afferent feedback produced particular variations of the swallow motor pattern. We hypothesize that specific SLN feedback might modulate the swallow central pattern generator during aberrant feeding conditions (food/liquid entering the airway), which may protect the airway and serve as potentially important clinical diagnostic indicators.

7.
Lung ; 197(2): 235-240, 2019 04.
Article in English | MEDLINE | ID: mdl-30680516

ABSTRACT

Anatomical connections are reported between the cerebellum and brainstem nuclei involved in swallow such as the nucleus tractus solitarius, nucleus ambiguus, and Kölliker-fuse nuclei. Despite these connections, a functional role of the cerebellum during swallow has not been elucidated. Therefore, we examined the effects of cerebellectomy on swallow muscle recruitment and swallow-breathing coordination in anesthetized freely breathing cats. Electromyograms were recorded from upper airway, pharyngeal, laryngeal, diaphragm, and chest wall muscles before and after complete cerebellectomy. Removal of the cerebellum reduced the excitability of swallow (i.e., swallow number), and muscle recruitment of the geniohyoid, thyroarytenoid, parasternal (chestwall), and diaphragm muscles, but did not disrupt swallow-breathing coordination. Additionally, diaphragm and parasternal muscle activity during swallow is reduced after cerebellectomy, while no changes were observed during breathing. These findings suggest the cerebellum modulates muscle excitability during recruitment, but not pattern or coordination of swallow with breathing.


Subject(s)
Brain Stem/physiology , Cerebellum/physiology , Deglutition , Diaphragm/innervation , Inhalation , Respiratory System/innervation , Animals , Cats , Cerebellum/surgery , Male , Models, Animal , Neural Pathways/physiology , Time Factors
9.
PLoS One ; 10(5): e0128245, 2015.
Article in English | MEDLINE | ID: mdl-26020240

ABSTRACT

Diseases affecting pulmonary mechanics often result in changes to the coordination of swallow and breathing. We hypothesize that during times of increased intrathoracic pressure, swallow suppresses ongoing expiratory drive to ensure bolus transport through the esophagus. To this end, we sought to determine the effects of swallow on abdominal electromyographic (EMG) activity during expiratory threshold loading in anesthetized cats and in awake-healthy adult humans. Expiratory threshold loads were applied to recruit abdominal motor activity during breathing, and swallow was triggered by infusion of water into the mouth. In both anesthetized cats and humans, expiratory cycles which contained swallows had a significant reduction in abdominal EMG activity, and a greater percentage of swallows were produced during inspiration and/or respiratory phase transitions. These results suggest that: a) spinal expiratory motor pathways play an important role in the execution of swallow, and b) a more complex mechanical relationship exists between breathing and swallow than has previously been envisioned.


Subject(s)
Abdomen/physiology , Deglutition/physiology , Movement/physiology , Respiratory Mechanics/physiology , Adult , Animals , Cats , Electromyography , Esophagus/physiology , Humans , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...