Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
iScience ; 27(4): 109586, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38623333

ABSTRACT

Respiration and cardiac activity intricately interact through complex physiological mechanisms. The heartbeat-evoked potential (HEP) is an EEG fluctuation reflecting the cortical processing of cardiac signals. We recently found higher HEP amplitude during exhalation than inhalation during a task involving attention to cardiac sensations. This may have been due to reduced cardiac perception during inhalation and heightened perception during exhalation through attentional mechanisms. To investigate relationships between HEP, attention, and respiration, we introduced an experimental setup that included tasks related to cardiac and respiratory interoceptive and exteroceptive attention. Results revealed HEP amplitude increases during the interoceptive tasks over fronto-central electrodes. When respiratory phases were taken into account, HEP increases were primarily driven by heartbeats recorded during exhalation, specifically during the cardiac interoceptive task, while inhalation had minimal impact. These findings emphasize the role of respiration in cardiac interoceptive attention and could have implications for respiratory interventions to fine-tune cardiac interoception.

2.
Brain Struct Funct ; 229(3): 549-559, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36808005

ABSTRACT

Multisensory integration (MSI) is a phenomenon that occurs in sensory areas after the presentation of multimodal stimuli. Nowadays, little is known about the anticipatory top-down processes taking place in the preparation stage of processing before the stimulus onset. Considering that the top-down modulation of modality-specific inputs might affect the MSI process, this study attempts to understand whether the direct modulation of the MSI process, beyond the well-known sensory effects, may lead to additional changes in multisensory processing also in non-sensory areas (i.e., those related to task preparation and anticipation). To this aim, event-related potentials (ERPs) were analyzed both before and after auditory and visual unisensory and multisensory stimuli during a discriminative response task (Go/No-go type). Results showed that MSI did not affect motor preparation in premotor areas, while cognitive preparation in the prefrontal cortex was increased and correlated with response accuracy. Early post-stimulus ERP activities were also affected by MSI and correlated with response time. Collectively, the present results point to the plasticity accommodating nature of the MSI processes, which are not limited to perception and extend to anticipatory cognitive preparation for task execution. Further, the enhanced cognitive control emerging during MSI is discussed in the context of Bayesian accounts of augmented predictive processing related to increased perceptual uncertainty.


Subject(s)
Psychomotor Performance , Visual Perception , Visual Perception/physiology , Bayes Theorem , Psychomotor Performance/physiology , Evoked Potentials , Reaction Time/physiology , Auditory Perception/physiology , Acoustic Stimulation , Photic Stimulation , Electroencephalography
3.
Psychophysiology ; 60(2): e14166, 2023 02.
Article in English | MEDLINE | ID: mdl-35975745

ABSTRACT

Elevated anxiety levels degrade task performance, likely because of cognitive function reduction in the frontoparietal brain network. This study aimed to test whether anxiety could impact the frontal cortex anticipatory brain functions and to investigate the possible beneficial effect of response-related feedback on task performance. The electroencephalographic activity was recorded while participants performed two Go/No-go tasks: one with response-related feedback on errors (feedback task) and one task without feedback (standard task). We first tested whether anxiety levels could be associated with pre-stimulus ERP components such as the prefrontal negativity (pN), linked with top-down attentional control, and the Bereitschaftspotential (BP), related to motor preparation. Then, we assessed whether feedback could affect anxious people's brain preparation, reducing the state of uncertainty and improving performance. Results showed that the pN was almost absent and the BP was lower during a standard task in the high anxiety than in the low anxiety group. In the feedback task, these components increased in the high anxious, becoming comparable to the low anxious. Behavioral results showed that false alarms in the high anxiety group were larger than in the low anxiety group during the standard task but became comparable in the feedback task. Similarly, response time in the high anxiety group was slower in the standard task than in the feedback task, and high anxious people were faster in the feedback task than in the standard one. This study contributes to clarifying neural correlates of anxiety, showing brain activity reductions related to action preparation in frontal areas. In addition, response-related feedback tasks could be used to normalize task performance in high anxious people.


Subject(s)
Anxiety , Electroencephalography , Humans , Feedback , Anxiety/psychology , Reaction Time/physiology , Brain/physiology
4.
Biol Psychol ; 172: 108360, 2022 07.
Article in English | MEDLINE | ID: mdl-35618162

ABSTRACT

Receiving feedback on action correctness is a relevant factor in learning, but only a few recent studies have investigated the neural bases involved in feedback processing and its consequences on performance. Several event-related potentials (ERP) studies investigated the feedback-related negativity, which is an ERP occurring after the presentation of a feedback stimulus. In contrast, the present study investigates the effect of providing feedback on brain activities before and after the presentation of an imperative stimulus with the aim to show how this could have an impact on cognitive functions related to anticipatory and post-stimulus task processing. Participants performed a standard visuomotor task and a modified version of the same task in which feedback sounds were emitted when participants committed performance errors. Overall, results showed that in the feedback task subjects have better cognitive control than in the standard task. All behavioral measures were improved in the feedback task. At the brain level, all the studied components were modulated by the presence of the feedback cue. Results pointed to a possible increase of anticipatory activity in the prefrontal cortex, a reduction of perceptual awareness in areas previously associated with the anterior insular cortex, and an increase of activity associated with selective attention in sensory cortices.


Subject(s)
Electroencephalography , Evoked Potentials , Attention , Cognition , Feedback , Humans , Psychomotor Performance
5.
Neuroscience ; 483: 1-12, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34973386

ABSTRACT

Proactive and reactive brain activities usually refer to processes occurring in anticipation or in response to perceptual and/or cognitive events. Previous studies found that, in auditory tasks, musical expertise improves performance mainly at the reactive stage of processing. In the present work, we aimed at acknowledging the effects of musical practice on proactive brain activities as a result of neuroplasticity processes occurring at the level of anticipatory motor/cognitive functions. Accordingly, performance and electroencephalographic recordings were compared between professional musicians and non-musicians during an auditory go/no-go task. Both proactive (pre-stimulus) and reactive (post-stimulus) event-related potentials (ERPs) were analyzed. Behavioral findings showed improved performance in musicians compared to non-musicians in terms of accuracy. For what concerns electrophysiological results, different ERP patterns of activity both before and after the presentation of the auditory stimulus emerged between groups. Specifically, musicians showed increased proactive cognitive activity in prefrontal scalp areas, previously localized in the prefrontal cortex, and reduced anticipatory excitability in frontal scalp areas, previously localized in the associative auditory cortices (reflected by the pN and aP components, respectively). In the reactive stage of processing (i.e., following stimulus presentation), musicians showed enhanced early (N1) and late (P3) components, in line with longstanding literature of enhanced auditory processing in this group. Crucially, we also found a significant correlation between the N1 component and years of musical practice. We interpreted these findings in terms of neural plasticity processes resulting from musical training, which lead musicians to high efficiency in auditory sensorial anticipation and more intense cognitive control and sound analysis.


Subject(s)
Music , Acoustic Stimulation , Auditory Perception/physiology , Cognition , Electroencephalography/methods , Music/psychology , Neuronal Plasticity/physiology
6.
Brain Sci ; 11(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34201992

ABSTRACT

The brain is able to gather different sensory information to enhance salient event perception, thus yielding a unified perceptual experience of multisensory events. Multisensory integration has been widely studied, and the literature supports the hypothesis that it can occur across various stages of stimulus processing, including both bottom-up and top-down control. However, evidence on anticipatory multisensory integration occurring in the fore period preceding the presentation of the expected stimulus in passive tasks, is missing. By means of event-related potentials (ERPs), it has been recently proposed that visual and auditory unimodal stimulations are preceded by sensory-specific readiness activities. Accordingly, in the present study, we tested the occurrence of multisensory integration in the endogenous anticipatory phase of sensory processing, combining visual and auditory stimuli during unimodal and multimodal passive ERP paradigms. Results showed that the modality-specific pre-stimulus ERP components (i.e., the auditory positivity -aP- and the visual negativity -vN-) started earlier and were larger in the multimodal stimulation compared with the sum of the ERPs elicited by the unimodal stimulations. The same amplitude effect was also present for the early auditory N1 and visual P1 components. This anticipatory multisensory effect seems to influence stimulus processing, boosting the magnitude of early stimulus processing. This paves the way for new perspectives on the neural basis of multisensory integration.

7.
Brain Sci ; 11(6)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199201

ABSTRACT

The Stroop task has been largely used to explore the ability to inhibit the automatic process of reading when reporting the ink color of incongruent color-words. Given the extensive literature regarding the processes involved in task performance, here we aimed at exploring the anticipatory brain activities during the Stroop task using the event-related potential (ERP) method. To accomplish this, eighteen participants performed two different blocks where neutral words were intermixed with congruent and incongruent words, respectively. Results revealed consistent pre-stimulus activity over the frontal, premotor and parietal brain areas. The premotor and the parietal activities were also modulated by the Stroop effect, being more enhanced in the incongruent than in the congruent blocks. Present findings add on the current literature pointing at an unexplored locus of anticipatory cognitive control during task preparation, thus offering a new way to investigate top-down preparatory processes of performance control in the Stroop task.

8.
Brain Struct Funct ; 226(2): 457-470, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33392666

ABSTRACT

The existence of neural correlates of spatial attention is not limited to the reactive stage of stimulus processing: neural activities subtending spatial attention are deployed well ahead of stimulus onset. ERP evidence supporting this proactive (top-down) attentional control is based on trial-by-trial S1-S2 paradigms, where the onset of a directional cue (S1) indicates on which side attention must be directed to respond to an upcoming target stimulus (S2). Crucially, S1 onset trigger both attention and motor preparation, therefore, these paradigms are not ideal to demonstrate the effect of attention at preparatory stage of processing. To isolate top-down anticipatory attention, the present study used a sustained attention paradigm based on a steady cue that indicates the attended side constantly throughout an entire block of trials, without any onset of an attentional cue. The main result consists in the description of the attention effect on the visual negativity (vN) component, a growing neural activity starting before stimulus presentation in extrastriate visual areas. The vN was consistently lateralized in the hemisphere contralateral to the attended side, regardless of the hand to be used. At the opposite, the lateralized motor activity emerged long after, confirming that the hand-selection process followed the spatial attention orientation process. The present study confirms the anticipatory nature of the vN component and corroborate its role in terms of preparatory visuospatial attention.


Subject(s)
Attention/physiology , Evoked Potentials, Visual/physiology , Psychomotor Performance/physiology , Visual Perception/physiology , Adolescent , Adult , Cues , Electroencephalography , Female , Humans , Male , Photic Stimulation , Reaction Time/physiology , Young Adult
9.
Cortex ; 135: 1-9, 2021 02.
Article in English | MEDLINE | ID: mdl-33341592

ABSTRACT

The anticipation of upcoming events is a key-feature of cognition. Previous investigations on anticipatory visuospatial attention mainly adopted transient and-more rarely-sustained tasks, whose main difference consists in the presence of transient or sustained cue stimuli and different involvement of top-down or bottom-up forms of attention. In particular, while top-down control has been suggested to drive sustained attention, it is not clear whether both endogenous and exogenous controls are recruited in transient attention task, or whether the cue-evoked attention may be interpreted as a mainly bottom-up guided process. To solve this issue, the present study focused on the preparatory brain activity of participants performing a sustained and a transient attention task. To this aim, the focus was on pre-stimulus event-related potential (ERP) components, i.e., the prefrontal negativity (pN) and the visual negativity (vN), associated with cognitive and sensorial preparation, emerging from prefrontal and visual areas, respectively. Results indicated that the pN was specific for the sustained task, while the vN emerged for both tasks, although smaller in the transient task, with a hemispheric lateralization contralateral to the attended hemifield. The present findings support the interpretation of the vN as a modality-specific index of attentional preparation, and suggest the presence of cognitive endogenous control in sustained tasks only, as revealed by the presence of a prefrontal activity that was interpreted as the locus of the top-down attentional modulation during the stimulus expectancy stage.


Subject(s)
Attention , Visual Perception , Cognition , Electroencephalography , Evoked Potentials
10.
Neuroscience ; 449: 1-8, 2020 11 21.
Article in English | MEDLINE | ID: mdl-33010340

ABSTRACT

It is well established that task complexity can affect both performance and brain processing. Event-related potentials (ERPs) studies have shown modulation of the well-known N2 and P3 components. However, limited information is available on the recently described frontal components associated with processing within the anterior insular cortex. This work aims to shed light on the effect of task complexity on the insular ERP components associated with perceptual (pN1) and sensory-motor awareness (pP1), as well as with stimulus-response mapping (the pP2). Moreover, this comparison of tasks with different complexity was expected to provide a new point of view on the debate on inhibitory or conflict monitoring role of the N2 component. Thirty-two participants were assigned to two groups: one performed an easy response task (with only a target and a non-target stimulus), the other one performed a complex response task (with two target and two non-target stimuli). The task comparison revealed enhanced pP1 and pP2 components but a reduced N2 component in the complex paradigm. These results suggest that task complexity may entail greater processing strength in the anterior insula functions associated with endogenous perceptual processing. Also, findings on the N2 activity provide evidence against both the inhibitory and conflict interpretation of this component, as the N2 amplitude was reduced in the complex task.


Subject(s)
Electroencephalography , Evoked Potentials , Brain , Cerebral Cortex , Humans , Reaction Time
11.
Psychophysiology ; 57(12): e13687, 2020 12.
Article in English | MEDLINE | ID: mdl-32970337

ABSTRACT

Previous event-related potential (ERP) studies mainly from the present research group showed a novel component, that is, the prefrontal negativity (pN), recorded in visual-motor discriminative tasks during the pre-stimulus phase. This component is concomitant to activity related to motor preparation, that is, the Bereitschaftspotential (BP). The pN component has been reported in experiments based on the visual modality only; for other modalities (acoustic and/or somatosensory) the presence of the pN warrants further investigation. This study represents a first step toward this direction; indeed, we aimed at describing the pN and the BP components in discriminative response tasks (DRTs) for three sensory modalities. In experiment 1 ERPs were recorded in 29 adults in visual and auditory DRT; an additional group of 15 adults participated to a somatosensory DRT (experiment 2). In line with previous results both the pN and the BP were clearly detectable in the visual modality. In the auditory modality the prefrontal pN was not detectable directly; however, the pN could be derived by subtraction of separate EEG traces recorded in a "passive" version of the same auditory task, in which motor responses were not required. In the somatosensory modality both the pN and the BP were detectable, although with lower amplitudes with respect to other two sensory modalities. Overall, regardless of the sensory modality, anticipatory task-related pN and BP components could be detected (or derived by subtraction) over both the prefrontal and motor cortices. These results support the view that anticipatory processes share common components among sensory modalities.


Subject(s)
Auditory Perception/physiology , Contingent Negative Variation/physiology , Discrimination, Psychological/physiology , Pattern Recognition, Visual/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Touch Perception/physiology , Adult , Electroencephalography , Female , Humans , Male , Young Adult
12.
Neurol Sci ; 41(10): 2711-2735, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32388645

ABSTRACT

Event-related potentials (ERPs) are obtained from the electroencephalogram (EEG) or the magnetoencephalogram (MEG, event-related fields (ERF)), extracting the activity that is time-locked to an event. Despite the potential utility of ERP/ERF in cognitive domain, the clinical standardization of their use is presently undefined for most of procedures. The aim of the present review is to establish limits and reliability of ERP medical application, summarize main methodological issues, and present evidence of clinical application and future improvement. The present section of the review focuses on well-standardized ERP methods, including P300, Contingent Negative Variation (CNV), Mismatch Negativity (MMN), and N400, with a chapter dedicated to laser-evoked potentials (LEPs). One section is dedicated to proactive preparatory brain activity as the Bereitschaftspotential and the prefrontal negativity (BP and pN). The P300 and the MMN potentials have a limited but recognized role in the diagnosis of cognitive impairment and consciousness disorders. LEPs have a well-documented usefulness in the diagnosis of neuropathic pain, with low application in clinical assessment of psychophysiological basis of pain. The other ERP components mentioned here, though largely applied in normal and pathological cases and well standardized, are still confined to the research field. CNV, BP, and pN deserve to be largely tested in movement disorders, just to explain possible functional changes in motor preparation circuits subtending different clinical pictures and responses to treatments.


Subject(s)
Cognitive Neuroscience , Electroencephalography , Brain , Evoked Potentials , Female , Humans , Italy , Male , Psychophysiology , Reproducibility of Results
13.
Int J Psychophysiol ; 147: 233-243, 2020 01.
Article in English | MEDLINE | ID: mdl-31837342

ABSTRACT

The literature on aerobic exercise and neurocognition reports acute post-exercise enhancement of neural activity linked to motor preparation in the premotor area and inhibitory control in the frontoparietal areas. However, the acute effect of vigorous-intensity aerobic exercise (VIAE) on the prefrontal, the insular, and the occipito-parietal activities linked to proactive control, early perceptual, and attentional processing is indeterminate. Thus, the present study investigated the acute effect of VIAE on the neurobehavioral correlates of these proactive and reactive neurocognitive functions. Young, healthy subjects participated in two separate experimental sessions: 30 min of VIAE and 30 min of internet browsing. Before and immediately after the two sessions, we recorded high-resolution electroencephalograms while performing a visuomotor discriminative response task. For testing the effect of VIAE on cognitive processing, we analyzed the behavioral performance and event-related potentials (ERPs). The analysis of behavioral data did not reveal any VIAE effect on task performance. The analysis of ERPs showed no significant VIAE effect on the proactive functions in the premotor and the prefrontal areas, but significant effects on the reactive functions related to selective attention in parietal areas (indexed by the N1 amplitude) and perceptual awareness in the anterior insula (indexed by the pN1 latency). We concluded that a single bout of VIAE does not affect the proactive functions in the premotor and the prefrontal areas, but modulates the early reactive neural mechanisms underlying perceptual awareness of stimuli in the insular cortex and selective attention in the parieto-occipital areas.


Subject(s)
Attention/physiology , Cognition/physiology , Evoked Potentials/physiology , Executive Function/physiology , Exercise/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Adult , Contingent Negative Variation/physiology , Electroencephalography , Female , Humans , Male , Visual Perception/physiology , Young Adult
14.
Exp Brain Res ; 235(4): 1163-1171, 2017 04.
Article in English | MEDLINE | ID: mdl-28175962

ABSTRACT

In a series of previous studies, we found that when participants were required to imagine another person performing a manual action, they imagined a significantly higher proportion of actions performed with their dominant rather than non-dominant hand, which indicates that shared motor representations between the self and the other are involved also during the imagination of others' actions. Interestingly, the activation of lateralized body-specific motor representations (as indexed by the congruence between the participant's handedness and the imagined person's handedness) appeared to be affected by the visual perspective adopted and participants' handedness. Given that past literature indicates that incongruent or unnatural postures interfere with motor imagery, we tested 480 right-handed participants to investigate whether subjects holding their right hand behind their back would have imagined right-handed actions less frequently than those holding their left hand behind their back. Moreover, we examined the effects of participant's sex, action category (simple or complex) and hand shape (open or fist). Contrary to our prediction, female participants holding their right hand behind their back imagined right-handed actions more frequently than those holding their left hand behind their back, whereas no significant effect was observed in male participants. We propose that the muscle contraction needed to keep a hand behind the back could activate the motor representations of that hand so as to increase the likelihood of imagining an action performed with the corresponding hand. Moreover, the sex difference observed is consistent with the greater use of embodied strategies by females than by males.


Subject(s)
Functional Laterality/physiology , Imagination/physiology , Movement/physiology , Psychomotor Performance/physiology , Sex Characteristics , Adult , Female , Humans , Male , Posture , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...