Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069046

ABSTRACT

Combining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp). Assessment of the peptides TAT-AMP, AMP-Antp, and TAT-AMP-Antp revealed their potential against Gram-positive strains (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus cereus). Peptides TAT-AMP and AMP-Antp using an amyloidogenic AMP from S1 ribosomal protein Thermus thermophilus, at concentrations ranging from 3 to 12 µM, exhibited enhanced antimicrobial activity against B. cereus. TAT-AMP and TAT-AMP-Antp, using an amyloidogenic AMP from the S1 ribosomal protein Pseudomonas aeruginosa, at a concentration of 12 µM, demonstrated potent antimicrobial activity against S. aureus and MRSA. Notably, the TAT-AMP, at a concentration of 12 µM, effectively inhibited Escherichia coli (E. coli) growth and displayed antimicrobial effects similar to gentamicin after 15 h of incubation. Peptide characteristics determined antimicrobial activity against diverse strains. The study highlights the intricate relationship between peptide properties and antimicrobial potential. Mechanisms of AMP action are closely tied to bacterial cell wall attributes. Peptides with the TAT fragment exhibited enhanced antimicrobial activity against S. aureus, MRSA, and P. aeruginosa. Peptides containing only the Antp fragment displayed lower activity. None of the investigated peptides demonstrated cytotoxic or cytostatic effects on either BT-474 cells or human skin fibroblasts. In conclusion, CPP-AMPs offer promise against various bacterial strains, offering insights for targeted antimicrobial development.


Subject(s)
Anti-Infective Agents , Cell-Penetrating Peptides , Methicillin-Resistant Staphylococcus aureus , Humans , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/chemistry , Staphylococcus aureus , Escherichia coli , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ribosomal Proteins/pharmacology , Microbial Sensitivity Tests
2.
Int J Mol Sci ; 23(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35008951

ABSTRACT

The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.


Subject(s)
Antimicrobial Peptides/pharmacology , Bacterial Proteins/chemistry , Ribosomal Proteins/chemistry , Staphylococcus aureus , Amino Acid Sequence , Amyloidogenic Proteins/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis , Antimicrobial Peptides/chemistry , Cell Survival/drug effects , Cell-Penetrating Peptides/chemical synthesis , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Dose-Response Relationship, Drug , Fibroblasts , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Models, Molecular , Protein Conformation , Protein Interaction Domains and Motifs , Staphylococcus aureus/drug effects
3.
Nanomaterials (Basel) ; 11(11)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34835893

ABSTRACT

Under certain conditions, many proteins/peptides are capable of self-assembly into various supramolecular formations: fibrils, films, amyloid gels. Such formations can be associated with pathological phenomena, for example, with various neurodegenerative diseases in humans (Alzheimer's, Parkinson's and others), or perform various functions in the body, both in humans and in representatives of other domains of life. Recently, more and more data have appeared confirming the ability of many known and, probably, not yet studied proteins/peptides, to self-assemble into quaternary structures. Fibrils, biofilms and amyloid gels are promising objects for the developing field of research of nanobiotechnology. To develop methods for obtaining nanobiomaterials with desired properties, it is necessary to study the mechanism of such structure formation, as well as the influence of various factors on this process. In this work, we present the results of a study of the structure of biogels formed by four 10-membered amyloidogenic peptides: the VDSWNVLVAG peptide (AspNB) and its analogue VESWNVLVAG (GluNB), which are amyloidogenic fragments of the glucantransferase Bgl2p protein from a yeast cell wall, and amyloidogenic peptides Aß(31-40), Aß(33-42) from the Aß(1-42) peptide. Based on the analysis of the data, we propose a possible mechanism for the formation of amyloid gels with these peptides.

4.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34575940

ABSTRACT

The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.


Subject(s)
Amyloidogenic Proteins/genetics , Pore Forming Cytotoxic Proteins/genetics , Pseudomonas aeruginosa/drug effects , Ribosomal Proteins/genetics , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/pharmacology , Amyloidogenic Proteins/ultrastructure , Anti-Bacterial Agents/adverse effects , Humans , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/pharmacology , Protein Structure, Secondary , Pseudomonas aeruginosa/pathogenicity , Ribosomal Proteins/pharmacology , Ribosomal Proteins/ultrastructure
5.
Int J Mol Sci ; 21(17)2020 09 02.
Article in English | MEDLINE | ID: mdl-32887478

ABSTRACT

Controlling the aggregation of vital bacterial proteins could be one of the new research directions and form the basis for the search and development of antibacterial drugs with targeted action. Such approach may be considered as an alternative one to antibiotics. Amyloidogenic regions can, like antibacterial peptides, interact with the "parent" protein, for example, ribosomal S1 protein (specific only for bacteria), and interfere with its functioning. The aim of the work was to search for peptides based on the ribosomal S1 protein from T. thermophilus, exhibiting both aggregation and antibacterial properties. The biological system of the response of Gram-negative bacteria T. thermophilus to the action of peptides was characterized. Among the seven studied peptides, designed based on the S1 protein sequence, the R23I (modified by the addition of HIV transcription factor fragment for bacterial cell penetration), R23T (modified), and V10I (unmodified) peptides have biological activity that inhibits the growth of T. thermophilus cells, that is, they have antimicrobial activity. But, only the R23I peptide had the most pronounced activity comparable with the commercial antibiotics. We have compared the proteome of peptide-treated and intact T. thermophilus cells. These important data indicate a decrease in the level of energy metabolism and anabolic processes, including the processes of biosynthesis of proteins and nucleic acids. Under the action of 20 and 50 µg/mL R23I, a decrease in the number of proteins in T. thermophilus cells was observed and S1 ribosomal protein was absent. The obtained results are important for understanding the mechanism of amyloidogenic peptides with antimicrobial activity and can be used to develop new and improved analogues.


Subject(s)
Amyloidogenic Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Peptide Fragments/pharmacology , Ribosomal Proteins/metabolism , Skin/cytology , Thermus thermophilus/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Cell Proliferation , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/drug effects , Ribosomal Proteins/chemistry , Skin/drug effects , Thermus thermophilus/growth & development
6.
Int J Mol Sci ; 21(15)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707977

ABSTRACT

Structural S1 domains belong to the superfamily of oligosaccharide/oligonucleotide-binding fold domains, which are highly conserved from prokaryotes to higher eukaryotes and able to function in RNA binding. An important feature of this family is the presence of several copies of the structural domain, the number of which is determined in a strictly limited range from one to six. Despite the strong tendency for the aggregation of several amyloidogenic regions in the family of the ribosomal S1 proteins, their fibril formation process is still poorly understood. Here, we combined computational and experimental approaches for studying some features of the amyloidogenic regions in this protein family. The FoldAmyloid, Waltz, PASTA 2.0 and Aggrescan programs were used to assess the amyloidogenic propensities in the ribosomal S1 proteins and to identify such regions in various structural domains. The thioflavin T fluorescence assay and electron microscopy were used to check the chosen amyloidogenic peptides' ability to form fibrils. The bioinformatics tools were used to study the amyloidogenic propensities in 1331 ribosomal S1 proteins. We found that amyloidogenicity decreases with increasing sizes of proteins. Inside one domain, the amyloidogenicity is higher in the terminal parts. We selected and synthesized 11 amyloidogenic peptides from the Escherichia coli and Thermus thermophilus ribosomal S1 proteins and checked their ability to form amyloids using the thioflavin T fluorescence assay and electron microscopy. All 11 amyloidogenic peptides form amyloid-like fibrils. The described specific amyloidogenic regions are actually responsible for the fibrillogenesis process and may be potential targets for modulating the amyloid properties of bacterial ribosomal S1 proteins.


Subject(s)
Amyloid/metabolism , Escherichia coli/chemistry , Ribosomal Proteins/chemistry , Thermus thermophilus/chemistry , Amino Acid Sequence , Benzothiazoles/chemistry , Computational Biology , Escherichia coli/metabolism , Fluorescence , Microscopy, Electron , Peptides/chemistry , Protein Structure, Secondary , Ribosomal Proteins/ultrastructure , Thermus thermophilus/metabolism
7.
Biochim Biophys Acta ; 1864(11): 1489-99, 2016 11.
Article in English | MEDLINE | ID: mdl-27500912

ABSTRACT

We performed a comparative study of the process of amyloid formation by short homologous peptides with a substitution of aspartate for glutamate in position 2 - VDSWNVLVAG (AspNB) and VESWNVLVAG (GluNB) - with unblocked termini. Peptide AspNB (residues 166-175) corresponded to the predicted amyloidogenic region of the protein glucantransferase Bgl2 from the Saccharomyces cerevisiae cell wall. The process of amyloid formation was monitored by fluorescence spectroscopy (FS), electron microscopy (EM), tandem mass spectrometry (TMS), and X-ray diffraction (XD) methods. The experimental study at pH3.0 revealed formation of amyloid fibrils with similar morphology for both peptides. Moreover, we found that the morphology of fibrils made of untreated ammonia peptide is not mentioned in the literature. This morphology resembles snakes lying side by side in the form of a wave without intertwining. Irrespective of the way of the peptide preparation, the rate of fibril formation is higher for AspNB than for GluNB. However, preliminary treatment with ammonia highly affected fibril morphology especially for AspNB. Such treatment allowed us to obtain a lag period during the process of amyloid formation. It showed that the process was nucleation-dependent. With or without treatment, amyloid fibrils consisted of ring-like oligomers with the diameter of about 6nm packed either directly ring-to-ring or ring-on-ring with a slight shift. We also proposed the molecular structure of amyloid fibrils for two studied peptides.


Subject(s)
Amyloid/ultrastructure , Amyloidogenic Proteins/ultrastructure , Aspartic Acid/chemistry , Glucan Endo-1,3-beta-D-Glucosidase/chemistry , Glutamic Acid/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Amino Acid Sequence , Amino Acid Substitution , Ammonia/chemistry , Amyloid/chemistry , Amyloidogenic Proteins/chemistry , Cell Wall/chemistry , Crystallography, X-Ray , Hydrogen-Ion Concentration , Models, Molecular , Molecular Structure , Peptide Fragments/chemistry , Solid-Phase Synthesis Techniques
8.
J Pept Sci ; 19(10): 607-12, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23983006

ABSTRACT

(N(In))-Formyl protective group of tryptophan has been introduced as a base/nucleophile-labile protective group. It has long been known that a free Nα-amino group of the peptide can serve as a nucleophile: an irreversible formyl N(In) → NH(2) transfer is consistently observed when deformylation is performed last on an otherwise deprotected peptide that possesses free Nα-amino group. Obviously, this particular side reaction should be expected any time free amino group is exposed to Trp(For), but, at the best of our knowledge, has never been reported in the course of Boc-SPPS. In the present communication, we describe a set of appropriately designed model experiments that permitted to detect the title side reaction both in solution and in solid-phase reactions. We observed intermolecular formyl group transfer with a model compound, Trp(For)-NH(2). Importantly, we also observed this migration on solid support with the rate roughly estimated to be up to 1% of residues per minute. We also observed that the formyl-group transfer reaction occurred in a sequence-dependent manner and was suppressed to a non-detectable level using 'in situ neutralization' technique. Because this side reaction is sequence dependent, there might be situations when the rate of the formation of Nα -formyl termination by-products is significant. In other cases, the Nα -For truncated by-products would not contaminate the final peptide significantly but still could be a source of microheterogeneity.


Subject(s)
Peptides/chemistry , Tryptophan/chemistry , Blood Proteins/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry
9.
Biochem Biophys Res Commun ; 325(3): 1099-105, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15541401

ABSTRACT

Zervamicin IIB is a 16 amino acid peptaibol that forms voltage dependent ion channels with multilevel conductance states in planar lipid bilayers and vesicular systems. Stability of the hinge region and intermolecular interactions were investigated in the N- and C-terminally spin-labelled peptide analogues. Intermolecular and intramolecular paramagnetic enhancement indicates that zervamicin behaves as a rigid helical rod in methanol solution. There are no high amplitude hinge-bending motions, and the peptaibol is monomeric up to concentration 1.5 mM. Stability of the hinge region illustrates the helix stabilising propensity of the Pro residue in membrane mimic environments and implies absence of significant conformational rearrangement due to voltage peptaibol activation.


Subject(s)
Ion Channels/chemistry , Magnetic Resonance Spectroscopy/methods , Membrane Proteins/chemistry , Peptides/chemistry , Ion Channels/analysis , Magnetics , Membrane Proteins/analysis , Methanol/chemistry , Peptaibols , Peptides/analysis , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Solutions , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...