Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Parasitol ; 67(2): 784-793, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35083711

ABSTRACT

PURPOSE: We identified calreticulin in human filaria Brugia malayi (BmCRT) that shares 97% homology with Wuchereria bancrofti calreticulin (WbCRT), but only 56% with human calreticulin. We found that BmCRT binds C1q and prevents complement-mediated parasite death; immunization with BmCRT leads to parasite death in a rodent model of the infection. BmCRT could, therefore, be a potential vaccine candidate. In the present study, we determined the levels of BmCRT-reactive IgG and its isotype in bancroftian filarial subjects. METHODS: Recombinant BmCRT (rBmCRT) was prepared, and the sera of endemic normal subjects (EN), microfilaraemics (Mf+) and chronic amicrofilaraemics (ChMf-) from a bancroftian filaria-endemic area and normal subjects from filaria-non-endemic area (NEN) were probed for IgG and its isotypes reacting with rBmCRT and its domains rN, rP and rC. RESULTS: rBmCRT and its rN domain-reactive IgG levels were high in EN and Mf+ groups; rC domain and rP domain showed moderate and very little reactivity, respectively. NEN sera were non-reactive. Moderate levels of rBmCRT-reactive IgG1, IgG3 and IgG4 in EN and Mf+ groups and low levels of IgG2 in Mf+ were found; IgG1 and IgG3 reactivity was found for rBmCRT and its rN domain only, while IgG4 reactivity was moderate for rN domain and low for rP and rC domains. While IgG reactivity was seen in all the endemic subjects, IgG isotype reactivity was found mostly in EN and Mf+ subjects. CONCLUSIONS: Moderate levels of rBmCRT (and its rN domain)-reactive IgG and its isotypes are present in bancroftian subjects. Preponderance of IgG1 and IgG3 isotypes which bind and activate complement has relevance to vaccine potential of BmCRT.


Subject(s)
Brugia malayi , Elephantiasis, Filarial , Vaccines , Animals , Antibodies, Helminth , Antigens, Helminth , Calreticulin/metabolism , Elephantiasis, Filarial/prevention & control , Humans , Immunization , Immunoglobulin G
2.
Protein Pept Lett ; 27(9): 841-850, 2020.
Article in English | MEDLINE | ID: mdl-32096736

ABSTRACT

BACKGROUND: Lymphatic Filariasis (LF) is one of the incapacitating and mosquito-borne sicknesses that on progression may prompt a few recognizable types of clutters like extreme lymphedema, hydrocele, and elephantiasis. METHODS: Antigenic preparations of B. malayi adult (BmA), S. cervi adult parasites and microfilariae (mf) total parasite extract were used to analyze the serological reactivity profile with human infectious sera collected from endemic areas of Bancroftian filariasis by performing Western blot and ELISA analysis. Sera from healthy human subjects were also included in the study to determine the variation incurred in the reactivity due to the filariasis infection. Gelelectrophoresis analysis of the crude-extract of BmA revealed seven protein bands while more than ten bands were recognized in S. cervi. RESULTS: our results represent a clear variation in protein patterns among the crude-antigens. ELISA results showed highest prevalence of IgG, IgM and IgG4 antibodies against all antigen preparations when recorded among microfilaraemic chronic infected patients. In both the antigenic preparations, the positive reactions were in the order of microfilaraemic>endemic normal>chronic>acute>nonendemic normal subjects. All sera of Mf+ patients were uniformly positive, while sera of both chronic and endemic normal subjects showed less reactivity. CONCLUSION: In the present study, we endeavoured to establish the extent of cross-reactivity of antigens derived from animal filarial parasites such as B. malayi and S. cervi with W. bancrofti filariasis sera of human patients. Besides, we further analyzed antibody-isotype profile of IgG, IgG4 and IgM in various human infection sera of bancroftian filarial subjects reactive to heterologous parasite antigens derived from adult worms of S. cervi from bovine and B. malayi from bovine and jirds.


Subject(s)
Antibodies, Helminth , Elephantiasis, Filarial , Immunoglobulin G , Immunoglobulin M , Wuchereria bancrofti , Animals , Antibodies, Helminth/blood , Antibodies, Helminth/immunology , Antigens, Helminth/chemistry , Antigens, Helminth/immunology , Cross Reactions , Elephantiasis, Filarial/blood , Elephantiasis, Filarial/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Wuchereria bancrofti/immunology , Wuchereria bancrofti/metabolism
3.
Cell Mol Biol (Noisy-le-grand) ; 64(4): 46-51, 2018 Mar 31.
Article in English | MEDLINE | ID: mdl-29642988

ABSTRACT

Lymphatic filariasis (LF) is a chronic and debilitating disease that affects people in tropical and sub-tropical areas of Asia, Africa, and Western Pacific. It is one of the leading community health problems in some of the endemic districts in India including Hardoi district of Uttar Pradesh. The disease is caused by the parasites Wuchereria bancrofti (W. bancrofti), Brugia malayi (B. malayi) and Brugia timori (B. timori), transmitted by the vector Culex, Anopheles and other mosquitoes. This cross-sectional survey study was carried out in rural areas, where its inhabitants vary in socio-economic status, from low to middle-income class. 12 villages of Hardoi district, Uttar Pradesh, India were included. The aim was to see the impact of age and gender on various clinical forms of LF and in estimating its economic and social implications. 260 LF affected people in different parts of Hardoi district were surveyed. The results revealed that the Mass Drug Administration (MDA) coverage reached more than 90%. The overall Microfilaria rate had been reduced, however the prevalence of elephantiasis increased with the progression of age and was found to be highest among people of >70 years of age, regardless of their gender.


Subject(s)
Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/prevention & control , Endemic Diseases/prevention & control , Mass Drug Administration , Adolescent , Adult , Age Factors , Aged , Albendazole/therapeutic use , Animals , Anopheles/parasitology , Antiparasitic Agents/therapeutic use , Brugia malayi/drug effects , Child , Cross-Sectional Studies , Culex/parasitology , Female , Humans , India/epidemiology , Male , Middle Aged , Prevalence , Sex Factors , Socioeconomic Factors , Wuchereria bancrofti/drug effects
4.
Acta Parasitol ; 61(1): 113-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26751881

ABSTRACT

Lymphatic filariasis (LF) is a chronic disease and is caused by the parasites Wuchereria bancrofti (W. bancrofti), Brugia malayi (B. malayi) and Brugia timori (B. timori). In the present study, Setaria cervi (S. cervi), a bovine filarial parasite has been used. Previously, it has been reported that the S. cervi shares some common proteins and antigenic determinants with that of human filarial parasite. The larval stages of filarial species usually cannot be identified by classical morphology. Hence, molecular characterization allows the identification of the parasites throughout all their developmental stages. The genomic DNA of S. cervi adult were isolated and estimated spectrophotometrically for the quantitative presence of DNA content. Screening of DNA sequences from filarial DNA GenBank and Expressed Sequence Tags (EST's) were performed for homologous sequences and then multiple sequence alignment was executed. The conserved sequences from multiple sequence alignment were used for In Silico primer designing. The successfully designed primers were used further in PCR amplifications. Therefore, in search of a promising diagnostic tool few genes were identified to be conserved in the human and bovine filariasis and these novel primers deigned may help to develop a promising diagnostic tool for identification of lymphatic filariasis.


Subject(s)
Elephantiasis, Filarial/diagnosis , Filarioidea/isolation & purification , Molecular Diagnostic Techniques/methods , Animals , Cattle , Computational Biology , Conserved Sequence , DNA Primers/genetics , DNA, Helminth/genetics , Filarioidea/genetics , Humans , Polymerase Chain Reaction/methods
5.
Bioinformation ; 9(5): 233-7, 2013.
Article in English | MEDLINE | ID: mdl-23516334

ABSTRACT

UNLABELLED: : Glutathione-S-transferase is a major phase-II detoxification enzyme in parasitic helminthes. Previous research highlights the importance of GSTs in the establishment of chronic infections in cytotoxic microenvironments. Filarial nematodes depend on these detoxification enzymes for their survival in the host. GST plays an important role in filariasis and other diseases. GST from W.bancrofti and B.malayi are very much different from human GST. This structural difference makes GST potential chemotherapeutic targets for antifilarial treatment. In this study we have checked the efficacy of some well known antifilarial compounds against GST from B.malayi and W.bancrofti. The structure of BmGST was modeled using modeller9v10 and was submitted to PMDB. Molecular docking study reveals arbindazole to be the most potent compounds against GST from both the filarial parasites. Role of some residues playing important role in the binding of compounds within the active site of GST has also been revealed in the present study. The BmGST and WbGST structural information and docking studies could aid in screening new antifilarials or selective inhibitors for chemotherapy against filariasis. ABBREVIATIONS: GST - Glutathione-S-transferase, Bm - Brugia malayi, Wb - Wuchereria bancrofti.

6.
Immunol Invest ; 38(8): 749-61, 2009.
Article in English | MEDLINE | ID: mdl-19860586

ABSTRACT

Crude antigenic preparations from heterologous filarial parasites gave false positive results because of complex nature of these antigens and their cross-reactivity with other helminth parasites. In the present study, efforts have been made to isolate and characterize the antigens from Setaria cervi important for diagnostic purposes. The fractionation of S. cervi somatic antigenic preparation on Sephacryl S-200 resulted in separation of three major antigenic peak fractions. Crossed immunoelectrophoretic analysis, using immune rabbit serum, revealed 13-14 antigens in SFP-I pool fraction, which showed high reactivity with filarial patients sera as compared to other two pool fractions. This SFP-I fraction was further purified by DEAE-Cellulose column chromatography. Out of the 4 antigen pool fractions, DFP-IV fraction showed high ELISA reactivity with filarial patient serum pool (Wuchereria bancrofti and Brugia malayi) as compared to other fractions. The SDS-PAGE analysis of DFP-IV fraction revealed 2 major and 1 minor protein bands (mol. wt. range 65-70 kDa). Crossed immunoelectrophoresis also showed the presence of 3 antigenic peaks in DFP-IV fraction. The purified DFP-IV fraction showed high reactivity with filarial patients sera but did not cross-react with sera from ascaris and hookworm infections thereby suggesting the filaria-specificity and potential for immunodiagnosis of human filariasis.


Subject(s)
Antigens, Helminth/immunology , Brugia malayi/immunology , Immunologic Tests , Setaria Nematode/immunology , Setariasis/immunology , Wuchereria bancrofti/immunology , Animals , Antigens, Helminth/analysis , Antigens, Helminth/isolation & purification , Brugia malayi/parasitology , Cell Fractionation , Chromatography, DEAE-Cellulose , Complex Mixtures/immunology , Cross Reactions , Humans , Immune Sera , Life Cycle Stages , Rabbits , Setaria Nematode/growth & development , Setariasis/diagnosis , Setariasis/parasitology , Wuchereria bancrofti/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...