Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Neuroimage ; 300: 120828, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39293355

ABSTRACT

The concept of structural reserve in stroke reorganization assumes that the relevance of the contralesional hemisphere strongly depends on the brain tissue spared by the lesion in the affected hemisphere. Recent studies, however, have indicated that the contralesional hemisphere's impact exhibits region-specific variability with concurrently existing maladaptive and supportive influences. This challenges traditional views, necessitating a nuanced investigation of contralesional motor areas and their interaction with ipsilesional networks. Our study focused on the functional role of contralesional key motor areas and lesion-induced connectome disruption early after stroke. Online TMS data of twenty-five stroke patients was analyzed to disentangle interindividual differences in the functional roles of contralesional primary motor cortex (M1), dorsal premotor cortex (dPMC), and anterior interparietal sulcus (aIPS) for motor function. Connectome-based lesion symptom mapping and corticospinal tract lesion quantification were used to investigate how TMS effects depend on ipsilesional structural network properties. At group and individual levels, TMS interference with contralesional M1 and aIPS but not dPMC led to improved performance early after stroke. At the connectome level, a more disturbing role of contralesional M1 was related to a more severe disruption of the structural integrity of ipsilesional M1 in the affected motor network. In contrast, a detrimental influence of contralesional aIPS was linked to less disruption of the ipsilesional M1 connectivity. Our findings indicate that contralesional areas distinctively interfere with motor performance early after stroke depending on ipsilesional structural integrity, extending the concept of structural reserve to regional specificity in recovery of function.


Subject(s)
Connectome , Motor Cortex , Stroke , Transcranial Magnetic Stimulation , Humans , Male , Female , Middle Aged , Stroke/physiopathology , Stroke/diagnostic imaging , Stroke/pathology , Connectome/methods , Aged , Motor Cortex/physiopathology , Motor Cortex/diagnostic imaging , Transcranial Magnetic Stimulation/methods , Functional Laterality/physiology , Adult , Magnetic Resonance Imaging , Neuronal Plasticity/physiology , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/physiopathology , Pyramidal Tracts/pathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology
2.
Brain Stimul ; 17(4): 836-846, 2024.
Article in English | MEDLINE | ID: mdl-39019396

ABSTRACT

BACKGROUND: Acute cerebral ischemia triggers a number of cellular mechanisms not only leading to excitotoxic cell death but also to enhanced neuroplasticity, facilitating neuronal reorganization and functional recovery. OBJECTIVE: Transferring these cellular mechanisms to neurophysiological correlates adaptable to patients is crucial to promote recovery post-stroke. The combination of TMS and EEG constitutes a promising readout of neuronal network activity in stroke patients. METHODS: We used the combination of TMS and EEG to investigate the development of local signal processing and global network alterations in 40 stroke patients with motor deficits alongside neural reorganization from the acute to the chronic phase. RESULTS: We show that the TMS-EEG response reflects information about reorganization and signal alterations associated with persistent motor deficits throughout the entire post-stroke period. In the early post-stroke phase and in a subgroup of patients with severe motor deficits, TMS applied to the lesioned motor cortex evoked a sleep-like slow wave response associated with a cortical off-period, a manifestation of cortical bistability, as well as a rapid disruption of the TMS-induced formation of causal network effects. Mechanistically, these phenomena were linked to lesions affecting ascending activating brainstem fibers. Of note, slow waves invariably vanished in the chronic phase, but were highly indicative of a poor functional outcome. CONCLUSION: In summary, we found evidence that transient effects of sleep-like slow waves and cortical bistability within ipsilesional M1 resulting in excessive inhibition may interfere with functional reorganization, leading to a less favorable functional outcome post-stroke, pointing to a new therapeutic target to improve recovery of function.


Subject(s)
Electroencephalography , Neuronal Plasticity , Stroke , Transcranial Magnetic Stimulation , Humans , Male , Female , Stroke/physiopathology , Stroke/complications , Middle Aged , Neuronal Plasticity/physiology , Aged , Transcranial Magnetic Stimulation/methods , Motor Cortex/physiopathology , Sleep/physiology , Adult , Recovery of Function/physiology
3.
Neuroimage Clin ; 41: 103586, 2024.
Article in English | MEDLINE | ID: mdl-38428325

ABSTRACT

BACKGROUND: Emotion processing deficits are known to accompany depressive symptoms and are often seen in stroke patients. Little is known about the influence of post-stroke depressive (PSD) symptoms and specific brain lesions on altered emotion processing abilities and how these phenomena develop over time. This potential relationship may impact post-stroke rehabilitation of neurological and psychosocial function. To address this scientific gap, we investigated the relationship between PSD symptoms and emotion processing abilities in a longitudinal study design from the first days post-stroke into the early chronic phase. METHODS: Twenty-six ischemic stroke patients performed an emotion processing task on videos with emotional faces ('happy,' 'sad,' 'anger,' 'fear,' and 'neutral') at different intensity levels (20%, 40%, 60%, 80%, 100%). Recognition accuracies and response times were measured, as well as scores of depressive symptoms (Montgomery-Åsberg Depression Rating Scale). Twenty-eight healthy participants matched in age and sex were included as a control group. Whole-brain support-vector regression lesion-symptom mapping (SVR-LSM) analyses were performed to investigate whether specific lesion locations were associated with the recognition accuracy of specific emotion categories. RESULTS: Stroke patients performed worse in overall recognition accuracy compared to controls, specifically in the recognition of happy, sad, and fearful faces. Notably, more depressed stroke patients showed an increased processing towards specific negative emotions, as they responded significantly faster to angry faces and recognized sad faces of low intensities significantly more accurately. These effects obtained for the first days after stroke partly persisted to follow-up assessment several months later. SVR-LSM analyses revealed that inferior and middle frontal regions (IFG/MFG) and insula and putamen were associated with emotion-recognition deficits in stroke. Specifically, recognizing happy facial expressions was influenced by lesions affecting the anterior insula, putamen, IFG, MFG, orbitofrontal cortex, and rolandic operculum. Lesions in the posterior insula, rolandic operculum, and MFG were also related to reduced recognition accuracy of fearful facial expressions, whereas recognition deficits of sad faces were associated with frontal pole, IFG, and MFG damage. CONCLUSION: PSD symptoms facilitate processing negative emotional stimuli, specifically angry and sad facial expressions. The recognition accuracy of different emotional categories was linked to brain lesions in emotion-related processing circuits, including insula, basal ganglia, IFG, and MFG. In summary, our study provides support for psychosocial and neural factors underlying emotional processing after stroke, contributing to the pathophysiology of PSD.


Subject(s)
Depression , Facial Recognition , Humans , Longitudinal Studies , Emotions/physiology , Anger , Brain/diagnostic imaging , Facial Expression , Facial Recognition/physiology
4.
Neuroimage Clin ; 37: 103360, 2023.
Article in English | MEDLINE | ID: mdl-36889100

ABSTRACT

BACKGROUND: Although post-stroke depression (PSD) is known to disrupt motor rehabilitation after stroke, PSD is often undertreated and its relationship with motor impairment remains poorly understood. METHODS: In a longitudinal study design we investigated, which factors at the early post-acute stage may increase the risk for PSD symptoms. We were especially interested in whether interindividual differences in the motivational drive to engage in physically demanding tasks indicate PSD development in patients suffering from motor impairments. Accordingly, we used a monetary incentive grip force task where participants were asked to hold their grip force for high and low rewards at stake to maximize their monetary outcome. Individual grip force was normalized according to the maximal force prior to the experiment. Experimental data, depression, and motor impairment were assessed from 20 stroke patients (12 male; 7.7 ± 6.78 days post-stroke) with mild-to-moderate hand motor impairment and 24 age-matched healthy participants (12 male). RESULTS: Both groups showed incentive motivation as indicated by stronger grip force for high versus low reward trials and the overall monetary outcome in the task. In stroke patients, severely impaired patients showed stronger incentive motivation, whereas early PSD symptoms were associated with reduced incentive motivation in the task. Larger lesions in corticostriatal tracts correlated with reduced incentive motivation. Importantly, chronic motivational deficits were preceded by initially reduced incentive motivation and larger corticostriatal lesions in the early stage post-stroke. CONCLUSIONS: More severe motor impairment motivates reward-dependent motor engagement, whereas PSD and corticostriatal lesions potentially disturb incentive motivational behavior, thereby increasing the risk of chronic motivational PSD symptoms. Acute interventions should address motivational aspects of behavior to improve motor rehabilitation post-stroke.


Subject(s)
Motivation , Stroke , Humans , Male , Depression/etiology , Longitudinal Studies , Stroke/complications , Hand Strength , Reward
SELECTION OF CITATIONS
SEARCH DETAIL