Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612812

ABSTRACT

Melatonin's cytoprotective properties may have therapeutic implications in treating ocular diseases like glaucoma and age-related macular degeneration. Literature data suggest that melatonin could potentially protect ocular tissues by decreasing the production of free radicals and pro-inflammatory mediators. This study aims to summarize the screened articles on melatonin's clinical, pharmacological, and formulation evaluation in treating ocular disorders. The identification of relevant studies on the topic in focus was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. The studies were searched in the following databases and web search engines: Pubmed, Scopus, Science Direct, Web of Science, Reaxys, Google Scholar, Google Patents, Espacenet, and Patentscope. The search time interval was 2013-2023, with the following keywords: melatonin AND ocular OR ophthalmic AND formulation OR insert AND disease. Our key conclusion was that using melatonin-loaded nano-delivery systems enabled the improved permeation of the molecule into intraocular tissues and assured controlled release profiles. Although preclinical studies have demonstrated the efficacy of developed formulations, a considerable gap has been observed in the clinical translation of the results. To overcome this failure, revising the preclinical experimental phase might be useful by selecting endpoints close to clinical ones.


Subject(s)
Glaucoma , Melatonin , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , Eye , Face , Databases, Factual
2.
J Pharm Sci ; 113(6): 1636-1644, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38281664

ABSTRACT

The administration of hydrophilic therapeutics has always been a great challenge because of their low bioavailability after administration. For this purpose, W/O/W microemulsion resulted to be a potential successful strategy for the delivery of hydrophilic compounds, interesting for the nasal mucosal therapy. Herein, an optimized biphasic W/O microemulsion was designed, through a preliminary screening, and it was inverted in a triphasic W/O/W microemulsion, intended for the nasal administration. In order to enhance the mucosal retention, surface modification of the biphasic W/O microemulsion was performed adding didodecyldimethylammonium bromide, and then converting the system into a cationic triphasic W/O/W microemulsion. The developed samples were characterized in terms of droplet size, polydispersity, zeta potential, pH and osmolality. The physical long-term stability was analyzed storing samples at accelerated conditions (40 ± 2 °C and 75 ± 5 % RH) for 6 months in a constant climate chamber, following ICH guidelines Q1A (R2). In order to verify the potential retention on the nasal mucosa, the two triphasic systems were analyzed in terms of mucoadhesive properties, measuring the in vitro interaction with mucin over time. Furthermore, fluorescein sodium salt was selected as a model hydrophilic drug to be encapsulated into the inner core of the two triphasic W/O/W microemulsions, and its release was analyzed compared to the free probe solution. The cytocompatibility of the two platforms was assessed on two cell lines, human fibroblasts HFF1 and Calu-3 cell lines, chosen as pre-clinical models for nasal and bronchial/tracheal airway epithelium.


Subject(s)
Administration, Intranasal , Emulsions , Hydrophobic and Hydrophilic Interactions , Nasal Mucosa , Emulsions/chemistry , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects , Humans , Drug Delivery Systems/methods , Quaternary Ammonium Compounds/chemistry , Cell Line , Particle Size , Water/chemistry , Fluorescein/administration & dosage , Fluorescein/pharmacokinetics , Fluorescein/chemistry
3.
Pharmaceuticals (Basel) ; 16(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37375726

ABSTRACT

Carnosine (beta-alanyl-L-histidine) is an endogenous dipeptide synthesized via the activity of the ATP-dependent enzyme carnosine synthetase 1 and can be found at a very high concentration in tissues with a high metabolic rate, including muscles (up to 20 mM) and brain (up to 5 mM). Because of its well-demonstrated multimodal pharmacodynamic profile, which includes anti-aggregant, antioxidant, and anti-inflammatory activities, as well as its ability to modulate the energy metabolism status in immune cells, this dipeptide has been investigated in numerous experimental models of diseases, including Alzheimer's disease, and at a clinical level. The main limit for the therapeutic use of carnosine is related to its rapid hydrolysis exerted by carnosinases, especially at the plasma level, reason why the development of new strategies, including the chemical modification of carnosine or its vehiculation into innovative drug delivery systems (DDS), aiming at increasing its bioavailability and/or at facilitating the site-specific transport to different tissues, is of utmost importance. In the present review, after a description of carnosine structure, biological activities, administration routes, and metabolism, we focused on different DDS, including vesicular systems and metallic nanoparticles, as well as on possible chemical derivatization strategies related to carnosine. In particular, a basic description of the DDS employed or the derivatization/conjugation applied to obtain carnosine formulations, followed by the possible mechanism of action, is given. To the best of our knowledge, this is the first review that includes all the new formulations of carnosine (DDS and derivatives), allowing a decrease or complete prevention of the hydrolysis of this dipeptide exerted by carnosinases, the simultaneous blood-brain barrier crossing, the maintenance or enhancement of carnosine biological activity, and the site-specific transport to different tissues, which then offers perspectives for the development of new drugs.

4.
Pharmaceutics ; 15(4)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37111782

ABSTRACT

The poor ocular bioavailability of melatonin (MEL) limits the therapeutic action the molecule could exert in the treatment of ocular diseases. To date, no study has explored the use of nanofiber-based inserts to prolong ocular surface contact time and improve MEL delivery. Here, the electrospinning technique was proposed to prepare poly (vinyl alcohol) (PVA) and poly (lactic acid) (PLA) nanofiber inserts. Both nanofibers were produced with different concentrations of MEL and with or without the addition of Tween® 80. Nanofibers morphology was evaluated by scanning electron microscopy. Thermal and spectroscopic analyses were performed to characterize the state of MEL in the scaffolds. MEL release profiles were observed under simulated physiological conditions (pH 7.4, 37 °C). The swelling behavior was evaluated by a gravimetric method. The results confirmed that submicron-sized nanofibrous structures were obtained with MEL in the amorphous state. Different MEL release rates were achieved depending on the nature of the polymer. Fast (20 min) and complete release was observed for the PVA-based samples, unlike the PLA polymer, which provided slow and controlled MEL release. The addition of Tween® 80 affected the swelling properties of the fibrous structures. Overall, the results suggest that membranes could be an attractive vehicle as a potential alternative to liquid formulations for ocular administration of MEL.

5.
Pharm Dev Technol ; 28(2): 248-263, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36748759

ABSTRACT

Epilepsy is one of the most common neurological disorders in the world. The therapeutic treatment is challenging since conventional drugs have limited efficacy and several side effects that impair patient management. Efforts are being made to find innovative strategies to control epileptic seizures. Intranasal administration provides a convenient route to deliver the drug to the brain. Carbamazepine (CBZ) is an anticonvulsant characterized by poor water solubility, nanonization can improve its bioavailability. Therefore, the design of CBZ nanocrystals (NCs) was assessed to obtain a formulation suitable for nose-to-brain delivery. CBZ NCs were prepared by sonoprecipitation following the Quality by Design approach identifying the impact of process and formulation variables on the critical quality attributes of the final product. The formulation was characterized by a technological point of view (thermotropic behavior, crystallinity, morphology, mucoadhesive strength). Response surface methodology was a reliable tool (error % 2.6) to optimize CBZ NCs with size ≤300 nm. Incubation of CBZ NCs in artificial cerebrospinal fluid at 37 °C did not promote aggregation and degradation phenomena. Preliminary biological studies revealed the biocompatibility of CBZ NCs towards Olfactory Ensheating Cells. The suspension was successfully converted into a powder. The highly concentrated formulation can be obtained, providing the possibility to administer the maximum dose of the drug in the lowest volume.


Subject(s)
Carbamazepine , Epilepsy , Humans , Drug Compounding , Anticonvulsants , Brain/metabolism , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/metabolism
6.
Int J Pharm ; 627: 122195, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36115466

ABSTRACT

Melatonin (MEL) is a pleiotropic neurohormone of increasing interest as a neuroprotective agent in ocular diseases. Improving the mucoadhesiveness is a proposed strategy to increase the bioavailability of topical formulations. Herein, the design and optimization of MEL-loaded lipid-polymer hybrid nanoparticles (mel-LPHNs) using Design of Experiment (DoE) was performed. LPHNs consisted of PLGA-PEG polymer nanoparticles coated with a cationic lipid-shell. The optimized nanomedicine showed suitable size for ophthalmic administration (189.4 nm; PDI 0.260) with a positive surface charge (+39.8 mV), high encapsulation efficiency (79.8 %), suitable pH and osmolarity values, good mucoadhesive properties and a controlled release profile. Differential Scanning Calorimetry and Fourier-Transform Infrared Spectroscopy confirmed the encapsulation of melatonin in the systems and the interaction between lipids and polymer matrix. Biological evaluation in an in vitro model of diabetic retinopathy demonstrated enhanced neuroprotective and antioxidant activities of mel-LPHNs, compared to melatonin aqueous solution at the same concentration (0.1 and 1 µM). A modified Draize test was performed to assess the ocular tolerability of the formulation showing no signs of irritation. To the best our knowledge, this study reported for the first time the development of mel-LPHNs, a novel and safe hybrid platform suitable for the topical management of retinal diseases.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Melatonin , Nanoparticles , Neuroprotective Agents , Humans , Nanomedicine , Melatonin/chemistry , Delayed-Action Preparations , Antioxidants/pharmacology , Diabetic Retinopathy/drug therapy , Nanoparticles/chemistry , Polymers/chemistry , Lipids/chemistry , Particle Size , Drug Carriers/chemistry
7.
Pharmaceutics ; 14(9)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36145708

ABSTRACT

Diosmin is a flavonoid with a great variety of biological activities including antioxidant and anti-inflammatory ones. Its cytoprotective effect in retinal pigment epithelium cells under high glucose conditions makes it a potential support in the treatment of diabetic retinopathy. Despite its benefits, poor solubility in water reduces its potential for therapeutic use, making it the biggest biopharmaceutical challenge. The design of diosmin-loaded nanocarriers for topical ophthalmic application represents a novelty that has not been yet explored. For this purpose, the response surface methodology (RSM) was used to optimize nanostructured lipid carriers (NLCs), compatible for ocular administration, to encapsulate diosmin and improve its physicochemical issues. NLCs were prepared by a simple and scalable technique: a melt emulsification method followed by ultrasonication. The experimental design was composed of four independent variables (solid lipid concentration, liquid lipid concentration, surfactant concentration and type of solid lipid). The effect of the factors was assessed on NLC size and PDI (responses) by analysis of variance (ANOVA). The optimized formulation was selected according to the desirability function (0.993). Diosmin at two different concentrations (80 and 160 µM) was encapsulated into NLCs. Drug-loaded nanocarriers (D-NLCs) were subjected to a physicochemical and technological investigation revealing a mean particle size of 83.58 ± 0.77 nm and 82.21 ± 1.12 nm, respectively for the D-NLC formulation prepared with diosmin at the concentration of 80 µM or 160 µM, and a net negative surface charge (-18.5 ± 0.60 and -18.0 ± 1.18, respectively for the two batches). The formulations were analyzed in terms of pH (6.5), viscosity, and adjusted for osmolarity, making them more compatible with the ocular environment. Subsequently, stability studies were carried out to assess D-NLC behavior under different storage conditions up to 60 days, indicating a good stability of NLC samples at room temperature. In-vitro studies on ARPE-19 cells confirmed the cytocompatibility of NLCs with retinal epithelium. The effect of D-NLCs was also evaluated in-vitro on a model of retinal inflammation, demonstrating the cytoprotective effect of D-NLCs at various concentrations. RSM was found to be a reliable model to optimize NLCs for diosmin encapsulation.

8.
Food Chem ; 393: 133428, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35696952

ABSTRACT

In the present study, a tangential membrane filtration system was applied to recover phenols from olive mill wastewater. The obtained concentrates were characterised for physico-chemical traits, antioxidant activity and antimicrobial effects. Results indicated that the highest concentration of hydroxytyrosol (7203.7 mg/L) was detected in the concentrate obtained by reverse osmosis, which also showed the highest antioxidant and antimicrobial activity. Moreover, the same concentrate was added, at different ratio, up to 4:250 v/v, into a commercial blood orange juice. The fortified juice with the addition of the concentrate, up to 2:250 v/v ratio, did not show off-flavour and off-odour compared to the control. Furthermore, after 60 days of refrigerated storage, the fortified juice exhibited a hydroxytyrosol content still complying with the daily intake recommended by EFSA health claim. The obtained results can be industrially useful in producing orange juice added with a natural antioxidant concentrate as a 'clean label' ingredient.


Subject(s)
Anti-Infective Agents , Citrus sinensis , Olea , Antioxidants , Citrus sinensis/chemistry , Olea/chemistry , Olive Oil , Phenols/analysis , Wastewater/chemistry
9.
Biomedicines ; 10(5)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35625722

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder that progressively compromises cognitive functions. Tumor necrosis factor (TNF)-Related Apoptosis Inducing Ligand (TRAIL), a proinflammatory cytokine belonging to the TNF superfamily, appears to be a key player in the inflammatory/immune orchestra of the AD brain. Despite the ability of an anti-TRAIL monoclonal antibody to reach the brain producing beneficial effects in AD mice, we attempted to develop such a TRAIL-neutralizing monoclonal antibody adsorbed on lipid and polymeric nanocarriers, for intranasal administration, in a valid approach to overcome issues related to both high dose and drug transport across the blood-brain barrier. The two types of nanomedicines produced showed physico-chemical characteristics appropriate for intranasal administration. As confirmed by enzyme-linked immunosorbent assay (ELISA), both nanomedicines were able to form a complex with the antibody with an encapsulation efficiency of ≈99%. After testing in vitro the immunoneutralizing properties of the nanomedicines, the latter were intranasally administered in AD mice. The antibody-nanocarrier complexes were detectable in the brain in substantial amounts at concentrations significantly higher compared to the free form of the anti-TRAIL antibody. These data support the use of nanomedicine as an optimal method for the delivery of the TRAIL neutralizing antibody to the brain through the nose-to-brain route, aiming to improve the biological attributes of anti-TRAIL-based therapy for AD treatment.

10.
Pharmaceutics ; 14(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35631540

ABSTRACT

The greatest challenge associated with topical drug delivery for the treatment of diseases affecting the posterior segment of the eye is to overcome the poor bioavailability of the carried molecules. Nanomedicine offers the possibility to overcome obstacles related to physiological mechanisms and ocular barriers by exploiting different ocular routes. Functionalization of nanosystems by fluorescent probes could be a useful strategy to understand the pathway taken by nanocarriers into the ocular globe and to improve the desired targeting accuracy. The application of fluorescence to decorate nanocarrier surfaces or the encapsulation of fluorophore molecules makes the nanosystems a light probe useful in the landscape of diagnostics and theranostics. In this review, a state of the art on ocular routes of administration is reported, with a focus on pathways undertaken after topical application. Numerous studies are reported in the first section, confirming that the use of fluorescent within nanoparticles is already spread for tracking and biodistribution studies. The first section presents fluorescent molecules used for tracking nanosystems' cellular internalization and permeation of ocular tissues; discussions on the classification of nanosystems according to their nature (lipid-based, polymer-based, metallic-based and protein-based) follows. The following sections are dedicated to diagnostic and theranostic uses, respectively, which represent an innovation in the ocular field obtained by combining dual goals in a single administration system. For its great potential, this application of fluorescent nanoparticles would experience a great development in the near future. Finally, a brief overview is dedicated to the use of fluorescent markers in clinical trials and the market in the ocular field.

11.
Drug Deliv Transl Res ; 12(8): 1991-2006, 2022 08.
Article in English | MEDLINE | ID: mdl-35604634

ABSTRACT

The issue of poor aqueous solubility is often a great hitch in the development of liquid dosage forms for those drugs that the Biopharmaceutics Classification System (BCS) includes in classes II and IV. Among the possible technological solutions, inclusion of the drug molecule within polymeric micelles, and particularly nanomicelles, has been proposed in the last years as a valid strategy. Our attention has been recently attracted by Soluplus®, an amphiphilic polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer able to form small and stable nanomicelles. The aim of this study was to characterize Soluplus® nanomicelles to enhance the apparent solubility of three model APIs, categorized in BCS class II: ibuprofen (IBU), idebenone (IDE), and miconazole (MIC). Drug-loaded Soluplus® micelles with a mean size around 60-70 nm were prepared by two methods (direct dissolution or film hydration method). The prepared nanosystems were characterized in terms of mean particle size and Zeta potential, physical stability, drug solubility, and in vitro drug release. The solubility of the tested APIs was shown to increase linearly with the concentration of graft copolymer. Soluplus® can be easily submitted to membrane filtration (0.2 µm PES or PTFE membranes), showing the potential to be sterilized by this method. Freeze-drying enabled to obtain powder materials that, upon reconstitution with water, maintained the initial micelle size. Finally, viscosity studies indicated that these nanomicelles have potential applications where a bioadhesive material is advantageous, such as in topical ocular administration.


Subject(s)
Biopharmaceutics , Micelles , Polyethylene Glycols , Polymers , Polyvinyls , Solubility
12.
Nanomaterials (Basel) ; 12(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35458027

ABSTRACT

Nanoencapsulation strategies, including the possibility to deliver natural compounds, synthetic molecules, or other actives (viruses) for the treatment of different human diseases, represent a hot topic of great interest [...].

13.
Pharmaceutics ; 14(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35456525

ABSTRACT

The development of new drugs is often hindered by low solubility in water, a problem common to nearly 90% of natural and/or synthetic molecules in the discovery pipeline. Nanocrystalline drug technology involves the reduction in the bulk particle size down to the nanosize range, thus modifying its physico-chemical properties with beneficial effects on drug bioavailability. Nanocrystals (NCs) are carrier-free drug particles surrounded by a stabilizer and suspended in an aqueous medium. Due to high drug loading, NCs maintain a potent therapeutic concentration to produce desirable pharmacological action, particularly useful in the treatment of central nervous system (CNS) diseases. In addition to the therapeutic purpose, NC technology can be applied for diagnostic scope. This review aims to provide an overview of NC application by different administration routes, especially focusing on brain targeting, and with a particular attention to therapeutic and diagnostic fields. NC therapeutic applications are analyzed for the most common CNS pathologies (i.e., Parkinson's disease, psychosis, Alzheimer's disease, etc.). Recently, a growing interest has emerged from the use of colloidal fluorescent NCs for brain diagnostics. Therefore, the use of NCs in the imaging of brain vessels and tumor cells is also discussed. Finally, the clinical effectiveness of NCs is leading to an increasing number of FDA-approved products, among which the NCs approved for neurological disorders have increased.

14.
Chem Commun (Camb) ; 58(19): 3126-3129, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35018398

ABSTRACT

Luminescent and photothermic carbon polymer dots (CPDs-PNM), composed of a carbonized core and cross-linked chains of poly(N-isopropylacrylamide), were synthetized by a novel, simple, solvent- and reagent-free method. The formation of CPDs-PNM was controlled by both temperature and heating time. The CPDs-PNM exhibited LCST behaviour, high photothermal conversion efficiency, curcumin loading capacity and no toxicity to eukaryotic cells. Proof of concept experiments confirmed an excellent thermally induced drug release activity to be used for photothermally controlled drug release.


Subject(s)
Carbon/chemistry , Polymers/chemistry , Quantum Dots/chemistry , Temperature , Drug Carriers/chemistry , Luminescence , Photochemical Processes , Polymers/chemical synthesis
15.
Eur J Pharm Biopharm ; 169: 144-155, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34662719

ABSTRACT

Pharmaceutical nanotechnology research is focused on smart nano-vehicles, which can deliver active pharmaceutical ingredients to enhance their efficacy through any route of administration and in the most varied therapeutical application. The design and development of new nanopharmaceuticals can be very laborious. In recent years, the application of mathematics, statistics and computational tools is emerging as a convenient strategy for this purpose. The application of Quality by Design (QbD) tools has been introduced to guarantee quality for pharmaceutical products and improve translational research from the laboratory bench into applicable therapeutics. In this review, a collection of basic-concept, historical overview and application of QbD in nanomedicine are discussed. A specific focus has been put on Response Surface Methodology and Artificial Neural Network approaches in general terms and their application in the development of nanomedicine to monitor the process parameters obtaining optimized system ensuring its quality profile.


Subject(s)
Nanotechnology , Pharmaceutical Vehicles , Technology, Pharmaceutical , Benchmarking , Drug Design/methods , Drug Design/trends , Humans , Nanotechnology/instrumentation , Nanotechnology/methods , Nanotechnology/standards , Pharmaceutical Vehicles/chemical synthesis , Pharmaceutical Vehicles/pharmacology , Quality Control , Technology, Pharmaceutical/standards , Technology, Pharmaceutical/trends
16.
Pharmaceutics ; 13(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34575584

ABSTRACT

Nowdays, neurodegenerative diseases represent a great challenge from both the therapeutic and diagnostic points of view. Indeed, several physiological barriers of the body, including the blood brain barrier (BBB), nasal, dermal, and intestinal barriers, interpose between the development of new drugs and their effective administration to reach the target organ or target cells at therapeutic concentrations. Currently, the nose-to-brain delivery with nanoformulations specifically designed for intranasal administration is a strategy widely investigated with the goal to reach the brain while bypassing the BBB. To produce nanosystems suitable to study both in vitro and/or in vivo cells trafficking for potential nose-to-brain delivery route, we prepared and characterized two types of fluorescent poly(ethylene glycol)-methyl-ether-block-poly(lactide-co-glycolide) (PLGA-PEG) nanoparticles (PNPs), i.e., Rhodamine B (RhB) dye loaded- and grafted- PNPs, respectively. The latter were produced by blending into the PLGA-PEG matrix a RhB-labeled polyaspartamide/polylactide graft copolymer to ensure a stable fluorescence during the time of analysis. Photon correlation spectroscopy (PCS), UV-visible (UV-vis) spectroscopies, differential scanning calorimetry (DSC), atomic force microscopy (AFM) were used to characterize the RhB-loaded and RhB-grafted PNPs. To assess their potential use for brain targeting, cytotoxicity tests were carried out on olfactory ensheathing cells (OECs) and neuron-like differentiated PC12 cells. Both PNP types showed mean sizes suitable for nose-to-brain delivery (<200 nm, PDI < 0.3) and were not cytotoxic toward OECs in the concentration range tested, while a reduction in the viability on PC12 cells was found when higher concentrations of nanomedicines were used. Both the RhB-labelled NPs are suitable drug carrier models for exploring cellular trafficking in nose-to-brain delivery for short-time or long-term studies.

17.
Antioxidants (Basel) ; 10(7)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34356309

ABSTRACT

Rescue of cognitive function represents an unmet need in the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Nutraceuticals deliver a concentrated form of a presumed bioactive(s) agent(s) that can improve cognitive function alone or in combination with current approved drugs for the treatment of cognitive disorders. Nutraceuticals include different natural compounds such as flavonoids and their subclasses (flavan-3-ols, catechins, anthocyanins, and flavonols), omega-3, and carnosine that can improve synaptic plasticity and rescue cognitive deficits through multiple molecular mechanisms. A deficit of transforming growth factor-ß1 (TGF-ß1) pathway is an early event in the pathophysiology of cognitive impairment in different neuropsychiatric disorders, from depression to AD. In the present review, we provide evidence that different nutraceuticals, such as Hypericum perforatum (hypericin and hyperforin), flavonoids such as hesperidin, omega-3, and carnosine, can target TGF-ß1 signaling and increase TGF-ß1 production in the central nervous system as well as cognitive function. The bioavailability of these nutraceuticals, in particular carnosine, can be significantly improved with novel formulations (nanoparticulate systems, nanoliposomes) that increase the efficacy and stability of this peptide. Overall, these studies suggest that the synergism between nutraceuticals targeting the TGF-ß1 pathway and current approved drugs might represent a novel pharmacological approach for reverting cognitive deficits in AD patients.

18.
Pharmaceutics ; 13(8)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34452126

ABSTRACT

Complementary and alternative medicines represent an interesting field of research on which worldwide academics are focusing many efforts. In particular, the possibility to exploit pharmaceutical technology strategies, such as the nanoencapsulation, for the delivery of essential oils is emerging as a promising strategy not only in Italy but also all over the world. The aim of this work was the development of nanostructured lipid carriers (NLC) for the delivery of essential oils (Lavandula, Mentha, and Rosmarinus) by intranasal administration, an interesting topic in which Italian contributions have recently increased. Essential oil-loaded NLC, projected as a possible add-on strategy in the treatment of neurodegenerative diseases, were characterized in comparison to control formulations prepared with Tegosoft CT and Neem oil. Homogeneous (polydispersity index, PDI < 0.2) nanoparticles with a small size (<200 nm) and good stability were obtained. Morphological and physical-chemical studies showed the formation of different structures depending on the nature of the liquid oil component. In particular, NLC prepared with Lavandula or Rosmarinus showed the formation of a more ordered structure with higher cytocompatibility on two cell lines, murine and human fibroblasts. Taken together, our preliminary results show that optimized positively charged NLC containing Lavandula or Rosmarinus can be proposed as a potential add-on strategy in the treatment of neurodegenerative diseases through intranasal administration, due to the well-known beneficial effects of essential oils and the mucoadhesive properties of NLC.

19.
Pharm Dev Technol ; 26(8): 824-845, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34218736

ABSTRACT

Scientific research has focused its attention on finding an alternative route to systemic oral and parenteral administration, to overcome their usual drawbacks, such as hepatic first-pass which decreases drug bioavailability after oral administration, off-target effects, low patient compliance and low speed of onset of the pharmacological action in first-aid cases. Innovative drug delivery systems (DDS), mainly based on polymer and lipid biocompatible materials, have given a great prompt in this direction in the last years. The intranasal (IN) route of administration is a valid non-invasive alternative. It is highly suitable for self-administration, the drug quickly reaches the bloodstream, largely avoiding the first pass effect, and can also reach directly the brain bypassing BBB. Association of IN route with DDS can thus become a winning strategy for the controlled delivery of drugs, especially when a very quick effect is desired or needed. This review aims at analyzing the scientific literature regarding IN-DDS and their different ways of administration (systemic, topical, pulmonary, nose-to-brain). In particular, attention was devoted to polymer- and lipid-based micro- and nanocarriers, being the topic of most published articles in the last decade, but the whole plethora of colloidal DDS investigated in recent years for IN administration was presented.


Subject(s)
Administration, Intranasal/methods , Drug Delivery Systems , Nanotechnology/methods , Drug Delivery Systems/methods , Humans , Microspheres , Nanoparticle Drug Delivery System
20.
Pharmaceutics ; 13(5)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064572

ABSTRACT

Ferulic acid (FA) is an antioxidant compound that can prevent ROS-related diseases, but due to its poor solubility, therapeutic efficacy is limited. One strategy to improve the bioavailability is nanomedicine. In the following study, FA delivery through polymeric nanoparticles (NPs) consisting of polylactic acid (NPA) and poly(lactic-co-glycolic acid) (NPB) is proposed. To verify the absence of cytotoxicity of blank carriers, a preliminary in vitro assay was performed on retinal pericytes and endothelial cells. FA-loaded NPs were subjected to purification studies and the physico-hemical properties were analyzed by photon correlation spectroscopy. Encapsulation efficiency and in vitro release studies were assessed through high performance liquid chromatography. To maintain the integrity of the systems, nanoformulations were cryoprotected and freeze-dried. Morphology was evaluated by a scanning electron microscope. Physico-chemical stability of resuspended nanosystems was monitored during 28 days of storage at 5 °C. Thermal analysis and Fourier-transform infrared spectroscopy were performed to characterize drug state in the systems. Results showed homogeneous particle populations, a suitable mean size for ocular delivery, drug loading ranging from 64.86 to 75.16%, and a controlled release profile. The obtained systems could be promising carriers for ocular drug delivery, legitimating further studies on FA-loaded NPs to confirm efficacy and safety in vitro.

SELECTION OF CITATIONS
SEARCH DETAIL
...