Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 34(12): 2624-31, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25324571

ABSTRACT

OBJECTIVE: The goal of the present study was to identify novel mechanisms that regulate smooth muscle cell (SMC) differentiation marker gene expression. APPROACH AND RESULTS: We demonstrate that the CArG-containing regions of many SMC-specific promoters are imbedded within CpG islands. A previously identified GC repressor element in the SM myosin heavy chain (MHC) promoter was highly methylated in cultured aortic SMC but not in the aorta, and this difference was inversely correlated with SM MHC expression. Using an affinity chromatography/mass spectroscopy-based approach, we identified the multifunctional Notch transcription factor, recombination signal binding protein for immunoglobulin κ J region (RBPJ), as a methylated GC repressor-binding protein. RBPJ protein levels and binding to the endogenous SM MHC GC repressor were enhanced by platelet-derived growth factor-BB treatment. A methylation mimetic mutation to the GC repressor that facilitated RBPJ binding inhibited SM MHC promoter activity as did overexpression of RBPJ. Consistent with this, knockdown of RBPJ in phenotypically modulated human aortic SMC enhanced endogenous SMC marker gene expression, an effect likely mediated by increased recruitment of serum response factor and Pol II to the SMC-specific promoters. In contrast, the depletion of RBPJ in differentiated transforming growth factor-ß-treated SMC inhibited SMC-specific gene activation, supporting the idea that the effects of RBPJ/Notch signaling are context dependent. CONCLUSIONS: Our results indicate that methylation-dependent binding of RBPJ to a GC repressor element can negatively regulate SM MHC promoter activity and that RBPJ can inhibit SMC marker gene expression in phenotypically modulated SMC. These results will have important implications on the regulation of SMC phenotype and on Notch-dependent transcription.


Subject(s)
Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Myosin Heavy Chains/genetics , Promoter Regions, Genetic , Smooth Muscle Myosins/genetics , Animals , Base Sequence , Becaplermin , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , CpG Islands , DNA Methylation , GC Rich Sequence , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/deficiency , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Mice , Mice, Knockout , Molecular Sequence Data , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Protein Binding , Proto-Oncogene Proteins c-sis/metabolism , Receptors, Notch/metabolism , Signal Transduction
2.
Arterioscler Thromb Vasc Biol ; 31(10): 2193-202, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21757658

ABSTRACT

OBJECTIVE: The investment of newly formed endothelial cell tubes with differentiated smooth muscle cells (SMC) is critical for appropriate vessel formation, but the underlying mechanisms remain unknown. We previously showed that depletion of focal adhesion kinase (FAK) in the nkx2.5 expression domain led to aberrant outflow tract (OFT) morphogenesis and strove herein to determine the cell types and mechanisms involved. METHODS AND RESULTS: We crossed fak(loxp) targeted mice with available Cre drivers to deplete FAK in OFT SMC (FAK(wnt) and FAK(nk)) or coronary SMC (FAK(cSMC)). In each case, depletion of FAK led to defective vasculogenesis that was incompatible with postnatal life. Immunohistochemical analysis of the mutant vascular structures revealed that FAK was not required for progenitor cell proliferation, survival, or differentiation into SMC but was necessary for subsequent SMC recruitment to developing vasculature. Using a novel FAK-null SMC culture model, we found that depletion of FAK did not influence SMC growth or survival, but blocked directional SMC motility and invasion toward the potent endothelial-derived chemokine, platelet-derived growth factor PDGFBB. FAK depletion resulted in unstable lamellipodial protrusions due to defective spatial-temporal activation of the small GTPase, Rac-1, and lack of Rac1-dependent recruitment of cortactin (an actin stabilizing protein) to the leading edge. Moreover, FAK null SMC exhibited a significant reduction in stimulated extracellular matrix degradation. CONCLUSIONS: FAK drives PDGFBB-stimulated SMC chemotaxis/invasion and is essential for SMC to appropriately populate the aorticopulmonary septum and the coronary vascular plexus.


Subject(s)
Chemotaxis , Focal Adhesion Kinase 1/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Neovascularization, Physiologic , Animals , Aorta/embryology , Aorta/enzymology , Apoptosis , Becaplermin , Cell Proliferation , Cell Survival , Cells, Cultured , Chemotaxis/genetics , Coronary Vessels/embryology , Coronary Vessels/enzymology , Cortactin/metabolism , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Focal Adhesion Kinase 1/deficiency , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation, Developmental , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Immunohistochemistry , Male , Mice , Mice, Knockout , Muscle, Smooth, Vascular/embryology , Neovascularization, Physiologic/genetics , Neuropeptides/metabolism , Platelet-Derived Growth Factor/metabolism , Proto-Oncogene Proteins c-sis , Pseudopodia/enzymology , Pulmonary Artery/embryology , Pulmonary Artery/enzymology , Quail/embryology , RNA Interference , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Transfection , Wnt1 Protein/genetics , Wnt1 Protein/metabolism , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein
SELECTION OF CITATIONS
SEARCH DETAIL