Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202401488, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695300

ABSTRACT

Borates have garnered a lot of attention in the realm of solid-state chemistry due to their remarkable characteristics, in which the synthesis of borates with isolated [BO3] by adding rare-earth elements is one of the main areas of structural design study. Five new mixed-metal Y-based rare-earth borates, Ba2ZnY2(BO3)4, KNa2Y(BO3)2, Li2CsY4(BO3)5, LiRb2Y(BO3)2, and RbCaY(BO3)2, have been discovered using the high-temperature solution approach. Isolated [BO3] clusters arranged in various configurations comprise their entire anionic framework, allowing for optical anisotropy tuning between 0.024 and 0.081 under 1064 nm. In this study, we characterize the relative placements of their [BO3] groups and examine how their structure affects their characteristics. The origin of their considerable optical anisotropy has been proven theoretically. This study unequivocally demonstrates that even a slight alteration to borates' anionic structure can result in a significant improvement in performance.

3.
Angew Chem Int Ed Engl ; 63(14): e202319121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38344870

ABSTRACT

The substitution of fluorine atoms for oxygen atoms/hydroxyl groups has emerged as a promising strategy to enhance the physical and chemical properties of oxides/hydroxides in fluorine chemistry. However, distinguishing fluorine from oxygen/hydroxyl in the reaction products poses a significant challenge in existing characterization methods. In this study, we illustrate that terahertz (THz) spectroscopy provides a powerful tool for addressing this challenge. To this end, we investigated two fluorination reactions of boric acid, utilizing MHF2 (M=Na, C(NH2)3) as fluorine reagents. Through an interplay between THz spectroscopy and solid-state density functional theory, we have conclusively demonstrated that fluorine atoms exclusively bind with the sp3-boron but not with the sp2-boron in the reaction products of Na[B(OH)3][B3O3F2(OH)2] (NaBOFH) and [C(NH2)3]2B3O3F4OH (GBF2). Based on this evidence, we have proposed a reaction pathway for the fluorinations under investigation, a process previously hindered due to structural ambiguity. This work represents a step forward in gaining a deeper understanding of the precise structures and reaction mechanisms involved in the fluorination of oxides/hydroxides, illuminated by the insights provided by THz spectroscopy.

4.
Angew Chem Int Ed Engl ; 63(4): e202316194, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38009443

ABSTRACT

Borate crystals can be chemically and functionally modified by the fluorination strategy, which encourages the identification of emerging fluorooxoborates with a structure and set of characteristics not seen in any other oxide parents. However, the bulk of fluorooxoborates have been found accidentally, rational methods of synthesis are required, particularly for the infrequently occurring poly-fluorinated components. Herein, we reported the use of bifluoride salts as a potent source of fluorine to prepare fluorooxoborates that contain rarely tri-fluorinated [BF3 X] (X=O and CH3 ) tetrahedra and eleven compounds were found. We identified the optical properties of the organofluorinated group [CH3 BF3 ] and their potential for nonlinear optics for the first time. Among these, two non-centrosymmetric components hold potential for the production of 266 nm harmonic coherent light for nonlinear optics, and more crucially, have the benefit of growing large size single crystals. Our study establishes experimental conditions for the coexistence of the diverse functional groups, enabling the production of poly-fluorinated optical crystals.

5.
J Am Chem Soc ; 145(44): 24401-24407, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37874887

ABSTRACT

The [B3O6] group as a prime functional unit provides borates with intrinsic properties that are modified by coordination to cations. Inherent [B3O6] cluster structures in borates exclusively made of them have a near-plane configuration, with more than 90% of them having a maximum dihedral angle of zero and the remaining ones being less than 13°. Although such an inherent configuration can produce considerable birefringence for good phase-matching ability, this is not conducive to obtaining high conversion efficiency and beam quality due to the walk-off effects in the nonlinear optical process. In this article, two new borate halides Ca2B3O6X (X = Cl and Br) were reported, in which the confinement effects of distorted halogen-centered secondary building blocks compress the existence space of [B3O6] primitives, resulting in the nonparallel arrangement between [B3O6] clusters in this series. Both compounds show large second harmonic generation effects, and more importantly, the broken inherent interarrangement of [B3O6] clusters makes them a moderate birefringence and small walk-off angle. Their moderate birefringence is due to the large angular alignment between [B3O6] clusters, resulting from the orbital hybridization between the Ca s and the O p orbitals of the terminal O atoms on [B3O6] clusters. Our model supports this viewpoint and offers guidelines for rearranging [B3O6] clusters' arrangements in borates.

6.
Chem Commun (Camb) ; 59(83): 12435-12438, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37772847

ABSTRACT

Cation substitution is a straightforward but effective technique for improving the structure and properties; however, controlling directed substitution still poses significant difficulties. Herein, a metal-free hydroxyfluorooxoborate (NH4)[C(NH2)3][B3O3F4(OH)] has been synthesized using the strategy of heterologous substitution based on the template of A2[B3O3F4(OH)]. Tunable structure and optical properties have been achieved via varied A-site cation substitution. The intrinsic mechanism for this tunability was established by crystallography and theoretical research.

7.
Inorg Chem ; 62(36): 14512-14517, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37642658

ABSTRACT

Optical anisotropy is pivotal for optical crystals, and it can be characterized by the maximum algebraic difference in refractive indices. Improving the optical anisotropy, especially for deep-ultraviolet (UV) crystals, is still a challenge and of interest. Herein, a new hydroxyfluorooxoborate, Rb[B3O3F2(OH)2], was obtained by the heterologous isomorphic substitution strategy. Dual enhancement for the band gap and birefringence compared with the parent A[B3O3F2(OH)2] (A = [Ph4P]/[Ph3MeP]) compounds was achieved in Rb[B3O3F2(OH)2]. This considerable enhancement originates from the removal of organic components and the retention of a birefringence-active anionic framework. This enhancement pushes the application region from UV to deep-UV. This discovery not only expands the structural chemistry of borates but also demonstrates the viability of heterologous isomorphic substitution to design deep-UV crystals with enhanced optical property.

8.
Small ; 19(46): e2305074, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37475504

ABSTRACT

Hg-based chalcogenides, as good candidates for the exploration of high-performance infrared (IR) nonlinear optical (NLO) materials, usually exhibit strong NLO effects, but narrow bandgaps. Herein, an unprecedented wide bandgap Hg-based IR NLO material Zn2 HgP2 S8 (ZHPS) with diamond-like structure is rationally designed and fabricated by a tetrahedron re-organization strategy with the aid of structure and property predictions. ZHPS exhibits a wide bandgap of 3.37 eV, which is the largest one among the reported Hg-based chalcogenide IR NLO materials and first breaks the 3.0 eV bandgap "wall" in this system, resulting in a high laser-induced damage threshold (LIDT) of ≈2.2 × AgGaS2 (AGS). Meanwhile, it shows a large NLO response (1.1 × AGS), achieving a good balance between bandgap (≥3.0 eV) and NLO effect (≥1 × AGS) for an excellent IR NLO material. DFT calculations uncover that, compared to normal [HgS4 ]n , highly distorted [HgS4 ]d tetrahedral units are conducive to generating wide bandgap, and the wide bandgap in ZHPS can be attributed to the strong s-p hybridization between Hg─S bonding in distorted [HgS4 ]d , which gives some insights into the design of Hg-based chalcogenides with excellent properties based on distorted [HgS4 ]d tetrahedra.

9.
Inorg Chem ; 62(26): 10059-10063, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37339069

ABSTRACT

Polymorphism is a well-known but important phenomenon in the field of solid-state chemistry. Crystalline materials can form various polymorphs and present drastically varied physical and chemical properties. Herein, systematic exploration of the BaO-MoO3 binary system leads to the discovery of a new barium molybdate, α-BaMo3O10. The temperature-dependent phase transition from α-BaMo3O10 to ß-BaMo3O10 is confirmed. The tunable linear and nonlinear optical properties induced by the phase transition are confirmed by both experimental and theoretical approaches. Also, ß-BaMo3O10 is identified as a nonlinear-optical crystal for the first time. The origin of linear- and nonlinear-optical properties of BaMo3O10 polymorphs is confirmed by the additional theoretical means. This work indicates that a small change in the structure can induce tunable symmetries and thereby widely divergent optical properties.

10.
Chem Commun (Camb) ; 59(15): 2114-2117, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36723363

ABSTRACT

Selective transformation between organic and inorganic systems is crucial but still remains a challenge. Herein, we demonstrated that selective organic-inorganic transformation is a simple but effective strategy to find new hydroxyfluorooxoborates. By replacing the [Ph4P]/[Ph3MeP] organic cations with Cs atoms, a new hydroxyfluorooxoborate Cs[B3O3F2(OH)2] with three-membered [B3O3F2(OH)2] clusters was synthesized. Theoretical analysis confirmed the effects of different components in the lattice of reported structure on the optical properties.

11.
Chemistry ; 29(6): e202203000, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36282275

ABSTRACT

The polarization modulation of deep-UV light is an important process that incorporates functionality to selectively respond to light-mater interaction. Typically, optical anisotropy is foremost to the use efficiency of deep-UV birefringent crystals. Herein, a new congruently melting polyborate with extremely large birefringence (Δn(001) =0.14@589.3 nm) and band gap (6.89 eV) is discovered as a high performance birefringent crystal, which breaks the current deadlock of deep-UV polyborates that usually show small birefringence. The rigid tetrahedra, including [ZnO4 ] and edge-sharing [BO4 ] tetrahedra, make all the planar [BO3 ] triangles in the lattice adopt preferential arrangement and thereby lead to an extraordinary large birefringence that is larger than all the deep-UV borates with experimentally measured values. Structural analyses with the additional theoretical calculations were used to study the origin of strong optical anisotropy in BaZnB4 O8 .

12.
Natl Sci Rev ; 9(8): nwac110, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35992234

ABSTRACT

Deep-ultraviolet (DUV) nonlinear optical (NLO) crystals that can extend the output range of coherent light below 200 nm are pivotal materials for solid-state lasers. To date, KBe2BO3F2 (KBBF) is the only usable crystal that can generate DUV coherent light by direct second harmonic generation (SHG), but the layered growth habit and toxic ingredients limit its application. Herein, we report a new fluoroborophosphate, (NH4)3B11PO19F3 (ABPF), containing four different functional units: [BO3], [BO4], [BO3F] and [PO4]. ABPF exhibits a KBBF-like structure while eliminating the limitations of KBBF crystal. The unique [B5PO10F]∞ layers enhance ABPF's performance; for example, it has a large SHG response (1.2 × KDP) and a sufficient birefringence (0.088 at 1064 nm) that enables the shortest phase-matching wavelength to reach the DUV region. Meanwhile, the introduction of strong B-O-P covalent bonds decreases the layered growth habit. These findings will enrich the structural chemistry of fluoroborophosphate and contribute to the discovery of more excellent DUV NLO crystals.

13.
Inorg Chem ; 61(31): 12067-12072, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35894746

ABSTRACT

Borates with tunable structure and property currently provide a new rich source for solid-state chemistry and materials science. Realization of property improvement via simple structural regulation is a rising hot spot of borate-based research. Herein, a new aluminoborate fluoride, Li3Cs6Al2B14O28F, with [B7O14] clusters was discovered, and it was found to melt congruently. The optimally aligned [B2O5] dimers within [B7O14] clusters make Li3Cs6Al2B14O28F an enhanced birefringence, which is about 4.3× higher than its congener compound Li4Cs3B7O14 with same [B7O14] clusters. Structural analysis and additional theoretical calculations have revealed the origin of enhanced optical anisotropy.

14.
Angew Chem Int Ed Engl ; 61(30): e202203984, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35538644

ABSTRACT

Polarization modulation of deep-UV light is of significance to current technologies, and to this end, the birefringent crystal has emerged as an invaluable material as it allows for effective light modulation. Herein, a double-modification strategy driven by F and OH anions that makes double effects towards the critical property enhancement of deep-UV birefringent crystals is proposed. This leads to a new hydroxyborate (NH4 )4 [B12 O16 F4 (OH)4 ] with giant cluster as a deep-UV birefringent crystal with large birefringence (Δnexp. =0.12@546.1 nm). This birefringence is a record among inorganic hydroxyborates with experimentally measured birefringence. Structural analysis shows that the near-plane arrangement of [B12 O16 F4 (OH)4 ] cluster is responsible for the large optical anisotropy. Theoretical calculations indicate that its π-conjugated [BO3 ] and [BO2 OH] units are the main source of this large optical anisotropy.

15.
Chem Commun (Camb) ; 58(37): 5594-5597, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35437534

ABSTRACT

Although phosphates are a rich source of deep-ultraviolet optical materials, the realization of large optical anisotropy in them still remains a challenge because of the small polarizability anisotropy of [PO4] units. Inspired by the fluoridation strategy and hydrogen bond interaction, a new metal-free monofluorophosphate, (N2H6)[HPO3F]2, was synthesized, which exhibits a large birefringence (cal. 0.077) and wide band gap (∼6.51 eV). Such a large birefringence in (N2H6)[HPO3F]2 sets a new record among available fluorophosphates, and the [HPO3F] unit is theoretically confirmed to be a new birefringence-active unit.

16.
Angew Chem Int Ed Engl ; 61(21): e202202096, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35258151

ABSTRACT

Discovery of new efficient nonlinear optical (NLO) materials with large second-order nonlinearity for the short-wave ultraviolet spectral region (λPM ≤266 nm, PM=phase-matching) is still very challenging. Herein, a new beryllium-free borate CaZn2 (BO3 )2 with Sr2 Be2 B2 O7 (SBBO) double-layered like configuration was rationally designed, which not only preserves the structural merits but also eliminates the limitations of the SBBO crystal. CaZn2 (BO3 )2 shows a large PM second harmonic generation (SHG) reponse of 3.8×KDP, which is 38 times higher than that of its barium analogue. This enhancement mainly originates from the 1 [Zn2 O6 ]∞ polar chains with a large net dipole moment and [BO3 ] units with a high NLO active density. Our findings show the great significance of the [ZnO4 ] tetrahedra introduced strategy to design beryllium-free SBBO-type NLO crystals and also verify the feasibility of using simple non-isomorphic substitution to induce giant second-order nonlinearity enhancement.

17.
Inorg Chem ; 60(20): 15131-15135, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34591454

ABSTRACT

The discovery of new borates with unique structures has always been a growing part of solid-state chemistry, especially for polyborates. Herein, a new aluminoborate, Cs3AlB6O12, has been discovered by a high-temperature solution in a vacuum system. The highly polymerized [B12O24] cluster, unlike the annular configuration in previously reported polyborates, is found in Cs3AlB6O12 for the first time. The different linkage reflected by the local symmetry in cluster makes these borates not isotypic, although the formula of [B12O24] is identical. Experimental measurement performed on Cs3AlB6O12 powder reveals the deep-ultraviolet transparent spectral feature.

18.
Dalton Trans ; 50(38): 13216-13219, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34523633

ABSTRACT

A new beryllium-free zincoborate, BaZn3(BO3)2F2, with a KBBF-type structure has been synthesized for the first time. The electrostatic force of interaction in BaZn3(BO3)2F2 provides better linkage in neighboring [ZnBO3F]∞ single layers. BaZn3(BO3)2F2 is the first case of borates with both [ZnO3F] tetrahedra and [ZnO6] octahedra, enriching the structural chemistry of borate system. All the coplanar [BO3] triangles align in the same direction with a high density, which endows BaZn3(BO3)2F2 with a large birefringence of cal. 0.076 at 1064 nm. This work is of great significance to design beryllium-free borates with a KBBF-type structure.

19.
Angew Chem Int Ed Engl ; 60(37): 20469-20475, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34152654

ABSTRACT

Maximizing the optical anisotropy in birefringent materials has emerged as an efficient route for modulating the polarization-dependent light propagation. Currently, the generation of deep-ultraviolet (deep-UV) polarized light below 200 nm is essential but challenging due to the interdisciplinary significance and insufficiency of high-performing birefringent crystals. Herein, by introducing multiple heteroanionic units, the first sodium difluorodihydroxytriborate-boric acid Na[B3 O3 F2 (OH)2 ]⋅[B(OH)3 ] has been characterized as a novel deep-UV birefringent crystal. Two rare heteroanionic units, [B3 O3 F2 (OH)2 ] and [B(OH)3 ], optimally align to induce large optical anisotropy and also the dangling bonds are eliminated with hydrogens, which results in an extremely large birefringence and band gap. The well-ordered OH/F anions in [B3 O3 F2 (OH)2 ] and [B(OH)3 ] were identified and confirmed by various approaches, and also the origin of large birefringence was theoretically discussed. These results confirm the feasibility of utilizing hydrogen involved heteroanionic units to design crystals with large birefringence, and also expand the alternative system of deep-UV birefringent crystals with new hydroxyfluorooxoborates.

20.
Nat Commun ; 12(1): 2597, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33972528

ABSTRACT

More than 3900 crystalline borates, including borate minerals and synthetic inorganic borates, in addition to a wealth of industrially-important boron-containing glasses, have been discovered and characterized. Of these compounds, 99.9 % contain only the traditional triangular BO3 and tetrahedral BO4 units, which polymerize into superstructural motifs. Herein, a mixed metal K5Ba2(B10O17)2(BO2) with linear BO2 structural units was obtained, pushing the boundaries of structural diversity and providing a direct strategy toward the maximum thresholds of birefringence for optical materials design. 11B solid-state nuclear magnetic resonance (NMR) is a ubiquitous tool in the study of glasses and optical materials; here, density functional theory-based NMR crystallography guided the direct characterization of BO2 structural units. The full anisotropic shift and quadrupolar tensors of linear BO2 were extracted from K5Ba2(B10O17)2(BO2) containing BO2, BO3, and BO4 and serve as guides to the identification of this powerful moiety in future and, potentially, previously-characterized borate minerals, ceramics, and glasses.

SELECTION OF CITATIONS
SEARCH DETAIL
...