Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(48): 19058-19066, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36414026

ABSTRACT

We report the successful growth of high-quality single crystals of Sr0.94Mn0.86Te1.14O6 (SMTO) using a self-flux method. The structural, electronic, and magnetic properties of SMTO are investigated by neutron powder diffraction (NPD), single-crystal X-ray diffraction (SCXRD), thermodynamic, and nuclear magnetic resonance techniques in conjunction with density functional theory calculations. NPD unambiguously determined octahedral (trigonal antiprismatic) coordination for all cations with the chiral space group P312 (no. 149), which is further confirmed by SCXRD data. The Mn and Te elements occupy distinct Wyckoff sites, and minor anti-site defects were observed in both sites. X-ray photoelectron spectroscopy reveals the existence of mixed valence states of Mn in SMTO. The magnetic susceptibility and specific heat data evidence a weak antiferromagnetic order at TN = 6.6 K. The estimated Curie-Weiss temperature θCW = -21 K indicates antiferromagnetic interaction between Mn ions. Furthermore, both the magnetic entropy and the 125Te nuclear spin-lattice relaxation rate showcase that short-range spin correlations persist well above the Néel temperature. Our work demonstrates that Sr0.94(2)Mn0.86(3)Te1.14(3)O6 single crystals realize a noncentrosymmetric triangular antiferromagnet.

2.
Inorg Chem ; 58(17): 11730-11737, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31415155

ABSTRACT

We report crystal growth, AC and DC magnetic susceptibilities [χ(T, H)], magnetization [M(T, H)], and heat capacity [CP(T, H)] measurement results of GdSbTe single crystal. GdSbTe is isostructural to the confirmed nonmagnetic nodal-line semimetal ZrSiS of noncentrosymmetric tetragonal crystal structure in space group P4/nmm (No. 129), but it shows additional long-range antiferromagnetic spin ordering for the Gd spins of S = 7/2 below TN. Both χ(T, H) and CP(T, H) measurements confirm the existence of a long-range antiferromagnetic (AFM) spin ordering of Gd spins below TN ∼ 12 K, and an additional spin reorientation/recovery (sr) behavior is identified from the change of on-site spin anisotropy between Tsr1 ∼ 7 and Tsr2 ∼ 4 K. The anisotropic magnetic susceptibilities of χ(T, H) below TN clearly demonstrate that the AFM long-range spin ordering of GdSbTe has an easy axis parallel to the ab-plane direction. The field- and orientation-dependent magnetization of M(T, H) at 2 K shows two plateaus to indicate the spin-flop transition for H||ab near ∼2.1 T and a metamagnetic state near ∼5.9 T having ∼1/3 of the fully polarized magnetization by the applied field. The heat capacity measurement results yield Sommerfeld coefficient of γ ∼ 7.6(4) mJ/mol K2 and θD ∼ 195(2) K being less than half of that for the nonmagnetic ZrSiS. A three-dimensional (3D) AFM spin structure is supported by the ab initio calculations for Gd having magnetic moment of 7.1 µB and the calculated AFM band structure indicates that GdSbTe is a semimetal with bare density of states (0.36 states/eV fu) at the Fermi level, which is 10 times smaller than the measured one to suggest strong spin-fluctuation.

3.
J Phys Condens Matter ; 31(28): 285802, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-30939461

ABSTRACT

We report high-precision magnetization ([Formula: see text]), magnetic susceptibility ([Formula: see text]), specific heat (C p (T, H)) and 'zero-field' electrical resistivity, [Formula: see text], data taken on Gd2Te3 single crystal over wide ranges of temperature and magnetic field (H), with either [Formula: see text]-axis or [Formula: see text]-plane. [Formula: see text] and [Formula: see text] unambiguously establish that the b-axis is the easy direction of magnetization whereas any direction in the ac-plane is a hard direction. The [Formula: see text]-type anomaly in 'zero-field' specific heat, C p (T, H = 0), and an abrupt drop in [Formula: see text] (characteristic of the paramagnetic (PM) - antiferromagnetic (AFM) phase transition) are observed at the Néel temperature, [Formula: see text] K. [Formula: see text] and C p (T,H) clearly demonstrate that [Formula: see text] shifts to lower temperatures with increasing H irrespective of whether H points in the easy or hard direction. When [Formula: see text], the [Formula: see text] isotherms at temperatures in the range 2.5 K [Formula: see text] [Formula: see text] K reveal the existence of a field-induced spin-flop (SF) transition at fields 4.0 T [Formula: see text] [Formula: see text] [Formula: see text] 4.5 T. The first principles electronic band structure and density of states calculations, based on the density functional theory, correctly predict an AFM ground state (stabilized primarily by the 4f  Gd3+ - 5p  Te2-- 4f  Gd3+ superexchange interactions) and the observed semi-metallic behavior for the Gd2Te3 compound. Moreover, these calculations yield the values [Formula: see text] [Formula: see text] for the ordered magnetic moment per Gd atom at T = 0, [Formula: see text] mJ mol-1 K-2 for the Sommerfeld coefficient for the electronic specific heat contribution and [Formula: see text] K for the Curie-Weiss temperature, respectively. These theoretical estimates conform well with the corresponding experimental values [Formula: see text] [Formula: see text], [Formula: see text] mJ mol-1 K-2 and [Formula: see text] K.

4.
Sci Rep ; 8(1): 6414, 2018 Apr 23.
Article in English | MEDLINE | ID: mdl-29686408

ABSTRACT

We report the extremely large magnetoresistance and anisotropic magnetoresistance in a non-magnetic semimetallic NbAs2 single crystal. Unsaturated transverse XMR with quadratic field dependence has been observed to be ~3 × 105 % at 2 K and 15 T. Up to 12.5 K, clear Shubnikov de Haas (SdH) quantum oscillations were observed from which two distinct Fermi pockets were identified. The corresponding quantum electronic parameters such as effective cyclotron mass and Dingle temperature were obtained using Lifshitz-Kosevich formula. From the field dependent Hall resistivity at 2 K, carrier concentrations n e (n h ) = 6.7691 (6.4352) × 1025 m-3 and mobilities µ e (µ h ) = 5.6676 (7.6947) m2 V-1 s-1 for electrons (e) and holes (h) were extracted using semiclassical two-band model fitting. We observed large anisotropic magnetoresistance about 84%, 75%, and 12% at 0.75 T and 6 K for three different orientations γ, θ and ϕ, respectively, similar to that in several topological semimetallic systems. Magnetic properties of NbAs2 are similar to the case of graphite, without any phase transition in the temperature range from 5 K to 300 K.

5.
J Phys Condens Matter ; 30(1): 015803, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29135472

ABSTRACT

We report the single crystal growth and transport properties of a Weyl semimetal TaAs. Unsaturated large magnetoresistance of about 22 100% at 2 K and 9 T is observed. From the Hall measurement, carrier concentrations n = 4.608 × 1024 m-3 and p = 3.099 × 1024 m-3, and mobilities µ p = 2.502 m2 V-1 s-1 and µ n = 16.785 m2 V-1 s-1 at 2 K are extracted. The de Haas-van Alphen oscillations at 2 K and 9 T suggest the presence of a Fermi surface, and the quantum electronic parameters such as effective cyclotron mass and Dingle temperature were obtained using Lifshitz-Kosevich fitting. Temperature dependent resistivity measurements at different static magnetic fields suggest the formation of an insulating gap in the Weyl semimetal TaAs. An angle-resolved photoemission spectroscopy study reveals Fermi arc surface states with different shaped features such as a long elliptical contour around each [Formula: see text] point, a bowtie-shaped contour around each [Formula: see text] point, and a crescent-shaped feature near the midpoint of each [Formula: see text] line.

6.
J Phys Condens Matter ; 29(9): 095601, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28098075

ABSTRACT

The anisotropic superconducting properties of PbTaSe2 single crystal is reported. Superconductivity with T c = 3.83 ± 0.02 K has been characterized fully with electrical resistivity ρ(T), magnetic susceptibility χ(T), and specific heat C p (T) measurements using single crystal samples. The superconductivity is type-II with lower critical field H c1 and upper critical field H c2 of 65 and 450 Oe (H⊥ to the ab-plane), 140 and 1500 Oe (H|| to the ab-plane), respectively. These results indicate that the superconductivity of PbTaSe2 is anisotropic. The superconducting anisotropy, electron-phonon coupling λ ep, superconducting energy gap Δ0, and the specific heat jump ΔC/γT c at T c confirms that PbTaSe2 can be categorized as a bulk superconductor.

7.
Sci Rep ; 7: 40603, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28098209

ABSTRACT

High quality single crystal ZrSiS as a theoretically predicted Dirac semimetal has been grown successfully using a vapor phase transport method. The single crystals of tetragonal structure are easy to cleave into perfect square-shaped pieces due to the van der Waals bonding between the sulfur atoms of the quintuple layers. Physical property measurement results including resistivity, Hall coefficient (RH), and specific heat are reported. The transport and thermodynamic properties suggest a Fermi liquid behavior with two Fermi pockets at low temperatures. At T = 3 K and magnetic field of Hǁc up to 9 Tesla, large magneto-resistance up to 8500% and 7200% for Iǁ(100) and Iǁ(110) were found. Shubnikov de Haas (SdH) oscillations were identified from the resistivity data, revealing the existence of two Fermi pockets at the Fermi level via the fast Fourier transform (FFT) analysis. The Hall coefficient (RH) showed hole-dominated carriers with a high mobility of 3.05 × 104 cm2 V-1 s-1 at 3 K. ZrSiS has been confirmed to be a Dirac semimetal by the Dirac cone mapping near the X-point via angle resolved photoemission spectroscopy (ARPES) with a Dirac nodal line near the Fermi level identified using scanning tunneling spectroscopy (STS).

8.
Inorg Chem ; 54(9): 4303-9, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25864534

ABSTRACT

By both experimental measurements and theoretical calculations, we investigated the magnetic and electronic properties of Li2Cu(WO4)2 as a tungstate-bridged quasi-one-dimensional (1D) copper spin-(1/2) chain system. Interestingly, magnetic susceptibility χ(T) and specific heat measurements show that the system undergoes a three-dimensional antiferromagnetic (AF)-like ordering at TN ≈ 3.7 K, below a broad χ(T) maximum at ∼8.9 K indicating a low-dimensional short-range AF spin correlation. Bonner-Fisher model fitting of χ(T) leads to an AF intrachain exchange constant of J/kB = 15.8 ± 0.1 K, and mean-field theory estimation gives an interchain coupling constant of J⊥/kB = 1.6 K, which supports the quasi-1D nature of this spin system. Theoretical evaluation of exchange coupling constants within the generalized gradient approximation (GGA) plus on-site Coulomb interaction (U) shows that the dominant AF exchange interaction is of ∼13.9 K along the a-axis with weak interchain coupling, in agreement with the experimental result of a quasi-1D spin-(1/2) chain system. The GGA+U calculations also predict that Li2Cu(WO4)2 is a charge transfer-type AF semiconductor with a direct band gap of 1.5 eV.

SELECTION OF CITATIONS
SEARCH DETAIL
...