Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1119625, 2023.
Article in English | MEDLINE | ID: mdl-37139108

ABSTRACT

To increase food production under the challenges presented by global climate change, the concept of de novo domestication-utilizing stress-tolerant wild species as new crops-has recently gained considerable attention. We had previously identified mutants with desired domestication traits in a mutagenized population of the legume Vigna stipulacea Kuntze (minni payaru) as a pilot for de novo domestication. Given that there are multiple stress-tolerant wild legume species, it is important to establish efficient domestication processes using reverse genetics and identify the genes responsible for domestication traits. In this study, we identified VsPSAT1 as the candidate gene responsible for decreased hard-seededness, using a Vigna stipulacea isi2 mutant that takes up water from the lens groove. Scanning electron microscopy and computed tomography revealed that the isi2 mutant has lesser honeycomb-like wax sealing the lens groove than the wild-type, and takes up water from the lens groove. We also identified the pleiotropic effects of the isi2 mutant: accelerating leaf senescence, increasing seed size, and decreasing numbers of seeds per pod. While doing so, we produced a V. stipulacea whole-genome assembly of 441 Mbp in 11 chromosomes and 30,963 annotated protein-coding sequences. This study highlights the importance of wild legumes, especially those of the genus Vigna with pre-existing tolerance to biotic and abiotic stresses, for global food security during climate change.

2.
Commun Biol ; 4(1): 952, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376793

ABSTRACT

Agricultural weeds are the most important biotic constraints to global crop production, and chief among these is weedy rice. Despite increasing yield losses from weedy rice in recent years worldwide, the genetic basis of weediness evolution remains unclear. Using whole-genome sequence analyses, we examined the origins and adaptation of Japanese weedy rice. We find evidence for a weed origin from tropical japonica crop ancestry, which has not previously been documented in surveys of weedy rice worldwide. We further show that adaptation occurs largely through different genetic mechanisms between independently-evolved temperate japonica- and tropical japonica-derived strains; most genomic signatures of positive selection are unique within weed types. In addition, some weedy rice strains have evolved through hybridization between weedy and cultivated rice with adaptive introgression from the crop. Surprisingly, introgression from cultivated rice confers not only crop-like adaptive traits (such as shorter plant height, facilitating crop mimicry) but also weedy-like traits (such as seed dormancy). These findings reveal how hybridization with cultivated rice can promote persistence and proliferation of weedy rice.


Subject(s)
Biological Evolution , Domestication , Evolution, Molecular , Genome, Plant , Oryza/genetics , Plant Weeds/genetics , Hybridization, Genetic
3.
Front Genet ; 11: 748, 2020.
Article in English | MEDLINE | ID: mdl-32793284

ABSTRACT

Loss of pod shattering is one of the most important domestication-related traits in legume crops. The non-shattering phenotypes have been achieved either by disturbed formation of abscission layer between the valves, or by loss of helical tension in sclerenchyma of endocarp, that split open the pods to disperse the seeds. During domestication, azuki bean (Vigna angularis) and yard-long bean (Vigna unguiculata cv-gr. Sesquipedalis) have reduced or lost the sclerenchyma and thus the shattering behavior of seed pods. Here we performed fine-mapping with backcrossed populations and narrowed the candidate genomic region down to 4 kbp in azuki bean and 13 kbp in yard-long bean. Among the genes located in these regions, we found MYB26 genes encoded truncated proteins in azuki bean, yard-long bean, and even cowpea. As such, our findings indicate that independent domestication on the two legumes has selected the same locus for the same traits. We also argue that MYB26 could be a target gene for improving shattering phenotype in other legumes, such as soybean.

4.
Breed Sci ; 70(3): 347-354, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32714057

ABSTRACT

Preserved rice (Oryza sativa L.) seeds stored for nearly a century as an emergency food stocks from the Mikawa area were investigated for their genetic diversity. Morphologically, the seeds appeared to be typical Japonica. One chloroplast INDEL petN-trnC, two nuclear INDELs Acp1 and Cat1, and three SNP markers in Starch synthase IIa were amplified to characterize the molecular profile. The efficiency of amplification varied among the markers. Most of preserved seeds were classified as Japonica, but some were identified as Indica. The heterozygous genotypes detected suggested a high frequency of outcrossing at that time. On the other hand, 21 SSR markers showed quite a high degree of amplification efficiency. Principal coordinate analysis and STRUCTURE analysis based on the SSR polymorphisms proved that the preserved seeds contained alleles that were not detected among current landraces and breeding varieties, and there were the expected three subpopulations among 96 preserved seeds. These results indicated that these preserved seeds from Mikawa area in Meiji era had high genetic diversity and consisted of some subpopulations including Indica landraces with typical Japonica seed shape. These lines were considered to have been lost from current genetic resources.

5.
Front Plant Sci ; 10: 1607, 2019.
Article in English | MEDLINE | ID: mdl-31867036

ABSTRACT

Though crossing wild relatives to modern cultivars is a usual means to introduce alleles of stress tolerance, an alternative is de novo domesticating wild species that are already tolerant to various kinds of stresses. As a test case, we chose Vigna stipulacea Kuntze, which has fast growth, short vegetative stage, and broad resistance to pests and diseases. We developed an ethyl methanesulfonate-mutagenized population and obtained three mutants with reduced seed dormancy and one with reduced pod shattering. We crossed one of the mutants of less seed dormancy to the wild type and confirmed that the phenotype was inherited in a Mendelian manner. De novo assembly of V. stipulacea genome, and the following resequencing of the F2 progenies successfully identified a Single Nucleotide Polymorphism (SNP) associated with seed dormancy. By crossing and pyramiding the mutant phenotypes, we will be able to turn V. stipulacea into a crop which is yet primitive but can be cultivated without pesticides.

6.
Breed Sci ; 69(2): 272-278, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31481836

ABSTRACT

We assessed genetic variation in rice germplasm in northern Laos and Vientiane province from polymorphism data of SSR markers. We classified 314 accessions into three clusters; Ia (corresponding to the lowland Japonica Group), Ib (upland Japonica Group) and II (Indica Group). The accessions of cluster Ib grew mainly in mountainous fields, and those of cluster II grew commonly in basins and along rivers. The few accessions of cluster Ia grew in only three provinces: Houaphanh, Xiangkhouang and Vientiane. Lowland cultivars in cluster II were predominant in Vientiane. Variations in heading date under short-day conditions in 2014 and long-day conditions in 2015 indicate that many accessions were sensitive to the photoperiod on account of complex genetic mechanisms underlying both photoperiod sensitivity and basic vegetative growth. A total of 219 among whole accessions were classified into 6 groups: E1-3 and L1-3. E2 and E3 were dominant in clusters Ib and II; E1 and L1-3 were minor groups. These results demonstrate characteristic distributions of the Indica and Japonica Group's germplasms in northern Laos and their genetic variation in heading date.

7.
Front Plant Sci ; 9: 729, 2018.
Article in English | MEDLINE | ID: mdl-29963062

ABSTRACT

Wild relatives of crop plants are thought as reservoir of prominent genetic resources for abiotic stress tolerance. However, insufficient information on genetic variation and phenotypic traits restricts their use for crop breeding. This study focused on wild species of genus Vigna (family Fabaceae) originated from highly humid to arid regions. To clarify the diversity of drought tolerance during the vegetative stage, 69 accessions, including 15 domesticated, and 54 wild accessions, were evaluated under two drought conditions of non-terminal and terminal stresses. In the non-terminal drought condition, the plants were grown in pipes of different heights where surface soil water content decreased faster in pipes with greater height. Relative shoot biomass was used for tolerance evaluation and we identified 19 drought tolerant accessions. Almost of them were wild accessions showing higher relative shoot biomass than that in the domesticated accessions. Domesticated species were mostly classified as drought susceptible but could be improved using tolerant conspecific wild ancestors with cross-compatibility. The tolerance was related with higher plant water status presumably due to small water consumption. However, the variation of drought tolerance could not be explained by simple tolerance factor alone, and other tolerance mechanisms such as deep rooting and increasing in root biomass were found in the tolerant accessions. In the terminal drought condition, the plants were grown in small pots, and the watering was stopped to expose them extreme and rapid soil water scarcity. The tolerance was evaluated as the number of days until wilting. However, the accessions found to be tolerant in the pot experiment were not the same as those in the pipe experiment. In this condition, plant water status was not related with the length of days to wilting. This indicates that different mechanisms are necessary for adaptation to each of the non-terminal and terminal drought conditions. Many accessions were tolerant to one of the conditions, although we identified that some accessions showed tolerance in both experiments. The great diversity in drought tolerance in the genus Vigna might serve to both improve crop drought tolerance and understand the mechanisms of adaptation in drought-prone environments.

8.
Sci Rep ; 7(1): 8239, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811524

ABSTRACT

The design, synthesis and application of N-acetylneuraminic acid-derived compounds bearing anomeric sulfo functional groups are described. These novel compounds, which we refer to as sulfo-sialic acid analogues, include 2-decarboxy-2-deoxy-2-sulfo-N-acetylneuraminic acid and its 4-deoxy-3,4-dehydrogenated pseudoglycal. While 2-decarboxy-2-deoxy-2-sulfo-N-acetylneuraminic acid contains no further modifications of the 2-deoxy-pyranose ring, it is still a more potent inhibitor of avian-origin H5N1 neuraminidase (NA) and drug-resistant His275Tyr NA as compared to the oxocarbenium ion transition state analogue 2,3-dehydro-2-deoxy-N-acetylneuraminic acid. The sulfo-sialic acid analogues described in this report are also more potent inhibitors of influenza NA (up to 40-fold) and bacterial NA (up to 8.5-fold) relative to the corresponding anomeric phosphonic acids. These results confirm that this novel anomeric sulfo modification offers great potential to improve the potency of next-generation NA inhibitors including covalent inhibitors.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Sialic Acids/chemical synthesis , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Binding Sites , Enzyme Inhibitors/pharmacology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Molecular , Molecular Conformation , Molecular Structure , Neuraminidase/antagonists & inhibitors , Neuraminidase/chemistry , Protein Binding , Sialic Acids/pharmacology , Structure-Activity Relationship
9.
Breed Sci ; 66(4): 580-590, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27795683

ABSTRACT

A glutinous texture of endosperm is one of the important traits of rice (Oyza sativa L.). Northern Laos is known as a center of glutinous rice diversity. We genotyped INDEL, SSR and SNP markers in a sample of 297 rice landraces collected in northern Laos. These glutinous varieties were confirmed to share a loss-of-function mutation in Granule bound starch synthase I (Wx). INDEL markers revealed a high frequency of recombinant genotypes between indica and japonica. Principal component analysis using SSR genotypes of Wx flanking region revealed that glutinous indica landraces were scattered between non-glutinous indica and glutinous-japonica types. High ratios of heterozygosity were found especially in glutinous indica. Haplotype analysis using SNP markers around Wx locus revealed that glutinous indica landraces would have a few chromosome segments of glutinous japonica. Frequent recombinations were confirmed outside of this region in glutinous indica. This intricate genetic structure of landraces suggested that glutinous indica landraces in Laos were generated through repeated natural crossing with glutinous-japonica landraces and severe selection by local farmers.

10.
PLoS One ; 11(10): e0164711, 2016.
Article in English | MEDLINE | ID: mdl-27736995

ABSTRACT

Breeding salt tolerant plants is difficult without utilizing a diversity of wild crop relatives. Since the genus Vigna (family Fabaceae) is comprised of many wild relatives adapted to various environmental conditions, we evaluated the salt tolerance of 69 accessions of this genus, including that of wild and domesticated accessions originating from Asia, Africa, Oceania, and South America. We grew plants under 50 mM and 200 mM NaCl for two weeks and then measured the biomass, relative quantum yield of photosystem II, leaf Na+ concentrations, and leaf K+ concentrations. The accessions were clustered into four groups: the most tolerant, tolerant, moderately susceptible, and susceptible. From the most tolerant group, we selected six accessions, all of which were wild accessions adapted to coastal environments, as promising sources of salt tolerance because of their consistently high relative shoot biomass and relative quantum yield. Interestingly, variations in leaf Na+ concentration were observed between the accessions in the most tolerant group, suggesting different mechanisms were responsible for their salt tolerance. Phylogenetic analysis with nuclear DNA sequences revealed that salt tolerance had evolved independently at least four times in the genus Vigna, within a relatively short period. The findings suggested that simple genetic changes in a few genes might have greatly affected salt tolerances. The elucidation of genetic mechanisms of salt tolerances in the selected accessions may contribute to improving the poor salt tolerance in legume crops.


Subject(s)
Biological Evolution , Vigna/metabolism , Biomass , Cluster Analysis , DNA, Ribosomal/classification , DNA, Ribosomal/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Phylogeny , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Shoots/chemistry , Plant Shoots/metabolism , Potassium/analysis , Potassium/metabolism , Quantum Theory , Salt-Tolerant Plants/growth & development , Salt-Tolerant Plants/metabolism , Sodium/analysis , Sodium/metabolism , Vigna/growth & development
11.
PLoS One ; 11(1): e0147568, 2016.
Article in English | MEDLINE | ID: mdl-26800459

ABSTRACT

The genus Vigna (Fabaceae) consists of five subgenera, and includes more than 100 wild species. In Vigna, 10 crops have been domesticated from three subgenera, Vigna, Plectrotropis, and Ceratotropis. The habitats of wild Vigna species are so diverse that their genomes could harbor various genes responsible for environmental stress adaptation, which could lead to innovations in agriculture. Since some of the gene bank Vigna accessions were unidentified and they seemed to be novel genetic resources, these accessions were identified based on morphological traits. The phylogenetic positions were estimated based on the DNA sequences of nuclear rDNA-ITS and chloroplast atpB-rbcL spacer regions. Based on the results, the potential usefulness of the recently described species V. indica and V. sahyadriana, and some wild Vigna species, i.e., V. aconitifolia, V. dalzelliana, V. khandalensis, V. marina var. oblonga, and V. vexillata, was discussed.


Subject(s)
Fabaceae/genetics , DNA, Plant/genetics , Evolution, Molecular , Fabaceae/classification , Phylogeny
12.
Front Plant Sci ; 6: 1050, 2015.
Article in English | MEDLINE | ID: mdl-26648953

ABSTRACT

Genus Vigna comprise several domesticated species including cowpea and mungbean, and diverse wild species. We found an introgressive hybrid population derived from two wild species, Vigna umbellata and Vigna exilis, in Ratchaburi district, Thailand. The hybrid was morphologically similar to V. umbellata but habituated in a limestone rock mountain, which is usually dominated by V. exilis. Analyzing simple sequence repeat loci indicated the hybrid has undergone at least one round of backcross by V. umbellata. We found the hybrid acquired vigorous growth from V. umbellata and drought tolerance plus early flowering from V. exilis, and thus has taken over some habitats of V. exilis in limestone karsts. Given the wide crossability of V. umbellata, the hybrid can be a valuable genetic resource to improve drought tolerance of some domesticated species.

13.
Sci Rep ; 5: 16780, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26616024

ABSTRACT

Second-generation sequencers (SGS) have been game-changing, achieving cost-effective whole genome sequencing in many non-model organisms. However, a large portion of the genomes still remains unassembled. We reconstructed azuki bean (Vigna angularis) genome using single molecule real-time (SMRT) sequencing technology and achieved the best contiguity and coverage among currently assembled legume crops. The SMRT-based assembly produced 100 times longer contigs with 100 times smaller amount of gaps compared to the SGS-based assemblies. A detailed comparison between the assemblies revealed that the SMRT-based assembly enabled a more comprehensive gene annotation than the SGS-based assemblies where thousands of genes were missing or fragmented. A chromosome-scale assembly was generated based on the high-density genetic map, covering 86% of the azuki bean genome. We demonstrated that SMRT technology, though still needed support of SGS data, achieved a near-complete assembly of a eukaryotic genome.


Subject(s)
Computational Biology/methods , Eukaryota/genetics , Genome , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Chromosome Mapping , Computational Biology/instrumentation , Fabaceae/genetics , Genetic Linkage , Genome, Plant , Genomics/instrumentation , High-Throughput Nucleotide Sequencing/instrumentation , Molecular Sequence Annotation , Reproducibility of Results
14.
J Plant Res ; 128(4): 653-63, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25796202

ABSTRACT

Using an F2 population derived from cultivated and wild azuki bean, we previously detected a reciprocal translocation and a seed size QTL near the translocation site. To test the hypothesis that the translocation in the cultivated variety contributed to the larger seed size, we performed further linkage analyses with several cross combinations between cultivated and wild azuki beans. In addition, we visually confirmed the translocation by cytogenetic approach using 25 wild and cultivated accessions. As a result, we found the translocation-type chromosomes in none of the cultivated accessions, but in a number of the wild accessions. Interestingly, all the wild accessions with the translocation were originally collected from East Japan, while all the accessions with normal chromosomes were from West Japan or the Sea of Japan-side region. Such biased geographical distribution could be explained by the glacial refugium hypothesis, and supported narrowing down the domestication origin of cultivated azuki bean.


Subject(s)
Fabaceae/genetics , Gene Expression Regulation, Plant/physiology , Chromosomes, Artificial, Bacterial , Chromosomes, Plant/genetics , Fabaceae/physiology , Gene Library , Genetic Linkage , In Situ Hybridization, Fluorescence , Japan , Quantitative Trait Loci , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...